Dynamics, Embeddings, and Continuous Symplectic Geometry

动力学、嵌入和连续辛几何

基本信息

项目摘要

This is a project about systems that evolve in time, called dynamical systems. Dynamical systems are fundamental across the sciences, but the mathematics underlying their study is very difficult, many important questions remain open, and new ideas are needed. A main theme of this project is to use a geometric approach to bring fresh insight to this field. Recently, the PI and collaborators used techniques from symplectic geometry to settle a longstanding question about certain dynamical systems. They showed that a particular dynamical system would take an infinite amount of energy to produce and used this to establish a new dichotomy in the set of systems: the finite-energy ones, and the rest. This dichotomy will enable a deeper understanding of the classification of dynamical systems and should allow for the resolution of several questions that have attracted wide interest. This project involves further research in this direction. One goal of the project is to find a further dichotomy for the finite-energy systems. By bringing a geometric approach to bear on questions about dynamical systems that have resisted solution by other methods, the project aims to showcase the power of these kinds of techniques. At the same time, an idea at the heart of the approach comes from studying when one symplectic shape can be deformed into a subset of another, and research in these directions should deepen our understanding of symplectic geometry. The project also has a substantial education component. The PI has previously worked to broaden participation in mathematics, foster equity, and support educational efforts in the field through prison education, research training in geometry at the high school and undergraduate levels, and course design. The project supports this work and related activities. This project involves a series of research investigations touching on the related fields of symplectic dynamics, symplectic embeddings, and continuous symplectic geometry. The main emphasis is on questions in low dimensions where powerful gauge theoretic techniques are available. The PI and collaborators recently settled the longstanding "Simplicity Conjecture" partly by contributing to the theory of periodic Floer homology spectral invariants. The project aims to further develop this theory and solve several longstanding questions; for example, to prove an analogue of the Simplicity Conjecture in higher genus. The project also aims to clarify the dynamics of Reeb flows, study infinite staircases in symplectic embedding problems, investigate questions about topological symplectic manifolds, and study higher-dimensional symplectic packing problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是一个关于随时间进化的系统的项目,称为动力系统。动力系统是整个科学的基础,但其研究的数学基础非常困难,许多重要的问题仍然悬而未决,需要新的想法。这个项目的一个主要主题是使用几何方法为这一领域带来新的见解。最近,PI和他的合作者使用辛几何的技术来解决关于某些动力系统的一个长期存在的问题。他们证明,一个特定的动力系统将需要无限的能量来产生,并利用这一点在一组系统中建立了一种新的二分法:有限能量的系统,其余的。这种二分法将使人们能够更深入地理解动力系统的分类,并应该能够解决引起广泛兴趣的几个问题。本项目涉及到这一方向的进一步研究。该项目的一个目标是为有限能量系统找到进一步的二分法。通过将几何方法引入到有关动力系统的问题上,这些问题已经拒绝了其他方法的求解,该项目旨在展示这些技术的力量。同时,这种方法的核心思想来自于研究一个辛形何时可以变形为另一个辛形的子集,在这些方向上的研究应该加深我们对辛几何的理解。该项目还包含大量的教育内容。国际数学联合会此前曾致力于通过监狱教育、高中和本科阶段的几何研究培训以及课程设计,扩大对数学的参与,促进公平,并支持该领域的教育努力。该项目支持这项工作和相关活动。本项目涉及辛动力学、辛嵌入和连续辛几何等相关领域的一系列研究调查。主要重点放在低维问题上,那里有强大的规范理论技术可用。PI和他的合作者最近解决了长期存在的“简单性猜想”,部分原因是对周期Floer同调谱不变量理论的贡献。该项目旨在进一步发展这一理论,并解决几个长期存在的问题;例如,证明更高亏格上的简单性猜想的类似。该项目还旨在阐明Reeb流的动力学,研究辛嵌入问题中的无限阶梯,调查关于拓扑辛流形的问题,并研究更高维辛填充问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Cristofaro-Gardiner其他文献

Higher symplectic capacities and the stabilized embedding problem for integral ellipsoids
Some results involving embedded contact homology
Symplectic embeddings from concave toric domains into convex ones
  • DOI:
    10.4310/jdg/1559786421
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Daniel Cristofaro-Gardiner
  • 通讯作者:
    Daniel Cristofaro-Gardiner

Daniel Cristofaro-Gardiner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Cristofaro-Gardiner', 18)}}的其他基金

CAREER: Symplectic Weyl Laws, Spectral Invariants, and Beyond
职业生涯:辛外尔定律、谱不变量及其他
  • 批准号:
    2238091
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Continuing Grant
Dynamics, Embeddings, and Continuous Symplectic Geometry
动力学、嵌入和连续辛几何
  • 批准号:
    2227372
  • 财政年份:
    2021
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Continuing Grant
Holomorphic Curves in Embeddings and Dynamics
嵌入和动力学中的全纯曲线
  • 批准号:
    1711976
  • 财政年份:
    2017
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1402200
  • 财政年份:
    2014
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Fellowship Award

相似海外基金

Language Embeddings for Proof Engineering
用于证明工程的语言嵌入
  • 批准号:
    EP/Y000242/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Research Grant
REU Site: Beyond Language: Training to Create and Share Vector Embeddings across Applications
REU 网站:超越语言:跨应用程序创建和共享向量嵌入的培训
  • 批准号:
    2244259
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Standard Grant
Learning explanable embeddings for topics and its applications
学习主题及其应用的可解释嵌入
  • 批准号:
    23K11231
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Unified Reference-Free Early Detection of Hardware Trojans via Knowledge Graph Embeddings
职业:通过知识图嵌入对硬件木马进行统一的无参考早期检测
  • 批准号:
    2238976
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: Image-based Readouts of Cellular State using Universal Morphology Embeddings
协作研究:使用通用形态学嵌入基于图像的细胞状态读出
  • 批准号:
    2348683
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Image-based Readouts of Cellular State using Universal Morphology Embeddings
协作研究:使用通用形态学嵌入基于图像的细胞状态读数
  • 批准号:
    2134695
  • 财政年份:
    2022
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Standard Grant
Pursuit-Evasion Games on Graph Embeddings
图嵌入上的追逃游戏
  • 批准号:
    575368-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Next Generation Psychological Embeddings
下一代心理嵌入
  • 批准号:
    ES/W007347/1
  • 财政年份:
    2022
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Research Grant
Collaborative Research: Image-based Readouts of Cellular State using Universal Morphology Embeddings
协作研究:使用通用形态学嵌入基于图像的细胞状态读出
  • 批准号:
    2134696
  • 财政年份:
    2022
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Standard Grant
2-Cell Embeddings of Graphs
图的 2 单元嵌入
  • 批准号:
    559667-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了