Holomorphic Curves in Embeddings and Dynamics
嵌入和动力学中的全纯曲线
基本信息
- 批准号:1711976
- 负责人:
- 金额:$ 14.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Systems that evolve over time are known as "dynamical systems" and appear in a wide range of fields including biology, economics, physics, and engineering. The equations that describe these systems are often difficult to solve directly, so new tools and techniques are needed to study them. This project is centered around a tool called "contact homology" that has produced powerful insights into many kinds of dynamical systems in recent years. Contact homology provides a framework for finding features of a dynamical system that are conserved even as the parameters of the dynamical system are allowed to vary. In this way, complicated systems can be studied by continuously changing the system into a more basic form, and then using knowledge of the dynamics in this simpler state to learn about the structure of the original system. This project aims to further develop the foundations of contact homology and to use it to produce new insights about dynamics. An example of an expected application is the discovery of new periodic trajectories for many dynamical systems, which are configurations of the system that re-occur infinitely often in time. An expected educational impact is the fostering of new opportunities for research training for undergraduates. In this area the PI plans to continue his efforts, which have led to two publications by undergraduates in peer-reviewed journals in the last several years. The PI also plans to continue his commitment to reach broader segments of the public, for example through participation in prison education initiatives and through outreach to local high schools. In a different direction, the PI plans to continue conversations with researchers in other fields of science to find new collaborative opportunities. The PI will disseminate the results of the project as broadly as possible, for example through organizing conferences and through effective use of online tools. To elaborate on the scientific merit of the project, previous work of the PI used a special kind of contact homology, called embedded contact homology (ECH), to show that any vector field of Reeb type on a closed three-manifold has at least two distinct periodic orbits. In fact, evidence suggests that stronger results hold, and in the current project the PI and collaborators plan to show in many cases that a Reeb vector field with more than two closed orbits has infinitely many. Insights into Reeb dynamics also come from the closely related field of symplectic embedding problems, and this project will pursue several lines of inquiry in this direction, for example one thread involves better understanding the number theoretic aspects of four-dimensional embedding problems while another involves finding new obstructions to symplectic embeddings in higher dimensions. New combinatorial tools are expected to be useful for these investigations, so the PI plans to continue developing an irrational version of the classical Ehrhart theory familiar from the theory of lattice point enumeration. More speculative directions of the project involve establishing new formulas for the asymptotics of the ECH spectrum and further developing the foundations of embedded contact homology by applying new tools for regularizing moduli spaces of pseudoholomorphic curves.
随时间演化的系统被称为“动力系统”,出现在生物学、经济学、物理学和工程学等广泛领域。描述这些系统的方程往往很难直接求解,因此,需要新的工具和技术来研究它们。这个项目是围绕着一个叫做“接触同源性”的工具展开的。接触同调为寻找动力系统的特征提供了一个框架,即使动力系统的参数允许变化,这些特征也是守恒的。 通过这种方式,可以通过不断地将系统改变为更基本的形式来研究复杂的系统,然后使用这种更简单状态下的动力学知识来了解原始系统的结构。 该项目旨在进一步发展接触同调的基础,并利用它来产生关于动力学的新见解。预期应用的一个例子是发现许多动力系统的新周期轨迹,这些轨迹是系统在时间上无限频繁地重复出现的配置。预期的教育影响是为本科生提供研究培训的新机会。 在这方面,PI计划继续努力,在过去几年中,本科生在同行评审期刊上发表了两篇论文。 公共宣传员还计划继续致力于接触更广泛的公众群体,例如通过参与监狱教育倡议和通过与当地高中的外联活动。在另一个方向上,PI计划继续与其他科学领域的研究人员进行对话,以寻找新的合作机会。PI将尽可能广泛地传播该项目的成果,例如通过组织会议和有效使用在线工具。为了详细说明该项目的科学价值,PI以前的工作使用了一种特殊的接触同源性,称为嵌入式接触同源性(ECH),证明在一个封闭的三流形上的任何Reeb型向量场至少有两个不同的周期轨道。事实上,有证据表明更强的结果成立,在目前的项目中,PI和合作者计划在许多情况下证明具有两个以上闭合轨道的Reeb向量场具有无穷多个。对Reeb动力学的见解也来自辛嵌入问题的密切相关领域,本项目将在这个方向上进行几条调查,例如,一条线索涉及更好地理解四维嵌入问题的数论方面,而另一条线索涉及在更高维度中找到辛嵌入的新障碍。新的组合工具有望对这些研究有用,因此,PI计划继续开发经典Ehrhart理论的无理版本,该理论与格点枚举理论相似。该项目的方向包括建立新的公式的ECH谱的渐近性和进一步发展的基础嵌入接触的同源性,通过应用新的工具,正则化模空间的伪全纯曲线。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sub-leading asymptotics of ECH capacities
- DOI:10.1007/s00029-020-00594-2
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Daniel Cristofaro-Gardiner;Nikhil Savale
- 通讯作者:Daniel Cristofaro-Gardiner;Nikhil Savale
The action spectrum characterizes closed contact 3-manifolds all of whose Reeb orbits are closed
作用谱表征了所有 Reeb 轨道均闭合的闭合接触 3 流形
- DOI:10.4171/cmh/493
- 发表时间:2020
- 期刊:
- 影响因子:0.9
- 作者:Cristofaro-Gardiner, Daniel;Mazzucchelli, Marco
- 通讯作者:Mazzucchelli, Marco
Special eccentricities of rational four-dimensional ellipsoids
有理四维椭球的特殊偏心率
- DOI:10.2140/agt.2022.22.2267
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:Cristofaro-Gardiner, Dan
- 通讯作者:Cristofaro-Gardiner, Dan
Ehrhart functions and symplectic embeddings of ellipsoids
- DOI:10.1112/jlms.12299
- 发表时间:2013-07
- 期刊:
- 影响因子:0
- 作者:Daniel Cristofaro-Gardiner;A. Kleinman
- 通讯作者:Daniel Cristofaro-Gardiner;A. Kleinman
Torsion contact forms in three dimensions have two or infinitely many Reeb orbits
- DOI:10.2140/gt.2019.23.3601
- 发表时间:2017-01
- 期刊:
- 影响因子:2
- 作者:Daniel Cristofaro-Gardiner;M. Hutchings;Daniel Pomerleano
- 通讯作者:Daniel Cristofaro-Gardiner;M. Hutchings;Daniel Pomerleano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Cristofaro-Gardiner其他文献
Higher symplectic capacities and the stabilized embedding problem for integral ellipsoids
- DOI:
10.1007/s11784-022-00942-z - 发表时间:
2022-06-10 - 期刊:
- 影响因子:1.100
- 作者:
Daniel Cristofaro-Gardiner;Richard Hind;Kyler Siegel - 通讯作者:
Kyler Siegel
Some results involving embedded contact homology
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.8
- 作者:
Daniel Cristofaro-Gardiner - 通讯作者:
Daniel Cristofaro-Gardiner
Daniel Cristofaro-Gardiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Cristofaro-Gardiner', 18)}}的其他基金
CAREER: Symplectic Weyl Laws, Spectral Invariants, and Beyond
职业生涯:辛外尔定律、谱不变量及其他
- 批准号:
2238091 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
Dynamics, Embeddings, and Continuous Symplectic Geometry
动力学、嵌入和连续辛几何
- 批准号:
2227372 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
Dynamics, Embeddings, and Continuous Symplectic Geometry
动力学、嵌入和连续辛几何
- 批准号:
2105471 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
- 批准号:
2337107 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
- 批准号:
2340564 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
- 批准号:
2401104 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
- 批准号:
22KJ0715 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
- 批准号:
2246820 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
- 批准号:
23K03042 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
- 批准号:
23H01067 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
- 批准号:
2246832 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant














{{item.name}}会员




