New tools for gauge theory in dimensions 3 and 4
3 维和 4 维规范理论的新工具
基本信息
- 批准号:2105512
- 负责人:
- 金额:$ 49.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High energy physicists believe that the Yang-Mills Equations model the behavior of quarks - the fundamental constituents of matter. The Yang-Mills Equations turn out to have a remarkably rich mathematical structure which, outside of direct applications to physics, enable the study of models of space-time inaccessible by other means. They even give tools for the study of the topological structure of DNA. The PI will continue his research on the Yang-Mills equations, and related ideas focusing on its connections to many different parts of mathematics, the study of nonlinear partial differential equations, low dimensional topology, algebraic geometry, representation theory and graph theory. The award provides support for students engaged in related research. The PI will study Floer homology invariants for three manifolds and knotted graphs in them. In particular with Peter Kronheimer, the PI is studying a family of Floer homology theories built from connections with a prescribed singularity along knotted graphs in three manifolds. These theories have many applications to questions in low dimensional topology. The PI plans to put a key missing feature for Instanton Floer homology into place-- having a full “equivariant” version available for all three manifolds. This should enable new computations and give rise to new application. The PI will develop tools for a topological attack on some basic questions in Algebraic Geometry and Number theory related to conjectures of Land and Caporaso-Harris-Mazur. Yet another rather delicate version appears to have bearing on questions of tri-colorability of spacial graphs in particular appears likely to provide novel insight to the question of tri-colorability of planar graphs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高能物理学家认为杨-米尔斯方程模拟了夸克的行为--夸克是物质的基本组成部分。 杨-米尔斯方程有着非常丰富的数学结构,除了直接应用于物理学之外,它还使得时空模型的研究无法通过其他方法进行。它们甚至为研究DNA的拓扑结构提供了工具。PI将继续他对杨米尔斯方程的研究,以及相关的想法,重点是它与数学的许多不同部分的联系,非线性偏微分方程的研究,低维拓扑,代数几何,表示论和图论。该奖项为从事相关研究的学生提供支持。 PI将研究三个流形和其中的纽结图的Floer同调不变量。特别是与彼得Kronheimer,PI正在研究一个家庭的弗洛尔同源理论建立的连接与一个规定的奇点沿着打结的图形在三个流形。这些理论在低维拓扑问题中有许多应用。PI计划将Instanton Floer同源性的一个关键缺失功能放在适当的位置-为所有三个流形提供完整的“等变”版本。这将使新的计算和产生新的应用。PI将开发工具,用于对代数几何和数论中与Land和Caporaso-Harris-Mazur有关的一些基本问题进行拓扑攻击。然而,另一个相当微妙的版本似乎有关系的问题,特别是空间图形的三色性似乎有可能提供新的见解的问题,三色性的平面graphs.This奖反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tomasz Mrowka其他文献
Tomasz Mrowka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tomasz Mrowka', 18)}}的其他基金
Gauge Theory and Trivalent Graphs in Three-Manifolds
三流形中的规范理论和三价图
- 批准号:
1808794 - 财政年份:2018
- 资助金额:
$ 49.35万 - 项目类别:
Continuing Grant
Instantons, low dimensional topology and knotted graphs
瞬子、低维拓扑和打结图
- 批准号:
1406348 - 财政年份:2014
- 资助金额:
$ 49.35万 - 项目类别:
Continuing Grant
EMSW21-RTG: Geometry and Topology
EMSW21-RTG:几何和拓扑
- 批准号:
0943787 - 财政年份:2010
- 资助金额:
$ 49.35万 - 项目类别:
Continuing Grant
Conference: Perspectives in Mathematics and Physics
会议:数学和物理的观点
- 批准号:
0928515 - 财政年份:2009
- 资助金额:
$ 49.35万 - 项目类别:
Standard Grant
Low Dimensional Topology and Gauge Theory
低维拓扑和规范论
- 批准号:
0805841 - 财政年份:2008
- 资助金额:
$ 49.35万 - 项目类别:
Continuing Grant
Low dimensional topology and invariants from symplectic geometry, gauge theory, and quantum algebra
辛几何、规范理论和量子代数的低维拓扑和不变量
- 批准号:
0706979 - 财政年份:2007
- 资助金额:
$ 49.35万 - 项目类别:
Standard Grant
Mathematical Problems in General Relativity
广义相对论中的数学问题
- 批准号:
0302748 - 财政年份:2003
- 资助金额:
$ 49.35万 - 项目类别:
Standard Grant
Low Dimensional and Semi-infinite Dimensional Topology
低维和半无限维拓扑
- 批准号:
0206485 - 财政年份:2002
- 资助金额:
$ 49.35万 - 项目类别:
Continuing Grant
Seiberg-Witten and Instanton Floer Homologies
Seiberg-Witten 和 Instanton Floer 同源性
- 批准号:
9802480 - 财政年份:1998
- 资助金额:
$ 49.35万 - 项目类别:
Standard Grant
Low Dimensional Topology via Differential Equations
通过微分方程的低维拓扑
- 批准号:
9803166 - 财政年份:1998
- 资助金额:
$ 49.35万 - 项目类别:
Continuing grant
相似海外基金
e-health tools to promote Equality in Quality of Life for childhood to young adulthood cancer patients, survivors and their families - a PanEuropean project supported by PanCare and Harmonic consortia
电子医疗工具可促进儿童到成年癌症患者、幸存者及其家人的生活质量平等 - 这是由 PanCare 和 Harmonic 联盟支持的 PanEuropean 项目
- 批准号:
10098114 - 财政年份:2024
- 资助金额:
$ 49.35万 - 项目类别:
EU-Funded
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 49.35万 - 项目类别:
Discovery Projects
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
- 批准号:
NE/Y001397/1 - 财政年份:2024
- 资助金额:
$ 49.35万 - 项目类别:
Research Grant
Sustaining Innovative Tools to Expand Youth-Friendly HIV Self-Testing (S-ITEST)
维持创新工具以扩大青少年友好型艾滋病毒自我检测 (S-ITEST)
- 批准号:
10933892 - 财政年份:2024
- 资助金额:
$ 49.35万 - 项目类别:
CAREER: Foundations, Algorithms, and Tools for Browser Invalidation
职业:浏览器失效的基础、算法和工具
- 批准号:
2340192 - 财政年份:2024
- 资助金额:
$ 49.35万 - 项目类别:
Continuing Grant
Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
- 批准号:
2335597 - 财政年份:2024
- 资助金额:
$ 49.35万 - 项目类别:
Continuing Grant
Developing Teaching Tools to Promote Transfer of Core Concept Knowledge Across Biological Scales and Sub-disciplines.
开发教学工具以促进跨生物尺度和子学科的核心概念知识的转移。
- 批准号:
2336776 - 财政年份:2024
- 资助金额:
$ 49.35万 - 项目类别:
Standard Grant
Feedback Literacy and AI Ethics: Leveraging Auto-Peer for Productive Interaction with Generative AI Tools in L2 Writing Education in Japan
反馈素养和人工智能道德:在日本二语写作教育中利用 Auto-Peer 与生成式人工智能工具进行富有成效的互动
- 批准号:
24K04103 - 财政年份:2024
- 资助金额:
$ 49.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 49.35万 - 项目类别:
Research Grant
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
$ 49.35万 - 项目类别:
Research Grant