Low Dimensional Topology and Gauge Theory

低维拓扑和规范论

基本信息

  • 批准号:
    0805841
  • 负责人:
  • 金额:
    $ 83.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The PI will continue his investigations into Floer homology invariants for three manifolds and knots in them. One particular focus will be joint work with Peter Kronheimer concerning a Floer homology theory built from connections with a prescribed singularity along a link in a three manifold. When specialized to links in the three sphere this will invariant appears to be closely related to the Khovanov homology of the link. Kronheimer and the PI intend to further explore this theory and understand more clearly its relation to Khovanov homology. With a student, Maksim Lypyanskiy, the PI intends to further explore a new foundation for Floer homology based on a theory of semi-infinite dimensional cycles. This appears to lead to a drastic simplification of theory. With another student, Ben Mares, the PI hopes to begin to put into place the mathematical theory of the N=4 supersymmetric Yang-Mills equations. Finally with third student, Timothy Nguyen, he hopes to understand the hyperbolic Yang-Mills equations especially in dimensions 3+1.The models physicists have constructed for understanding particles in high energy physics, like that Yang-Mills and Seiberg-Witten equations, have proved to be a source for many exciting developments in mathematics as well. Most notably these models figure crucially in understanding phenomena in dimensions three and four that still seem out of reach by other methods. The PI has been a leader in the mathematical developments of these models and will continue research in a number of different directions on these models. One project with Peter Kronheimer seeks to relate two quite different seeming models. Another seeks to development new mathematical foundations for exploration of these models and will hopefully lead to a great simplification in the rigorous mathematical construction of these models. Finally with some students Mrowka will explore new models in hopes that they too will have interesting mathematical consequences.
PI将继续他的调查弗洛尔同源不变量的三个流形和结在他们。 一个特别的重点将是联合工作与彼得Kronheimer关于弗洛尔同源理论建立从连接与一个规定的奇点沿着一个链接在三个流形。 当专门的链接在三个领域,这将不变量似乎是密切相关的Khovanov同源的链接。 Kronheimer和PI打算进一步探索这个理论,并更清楚地了解它与Khovanov同调的关系。 与学生马克西姆Lypyanskiy,PI打算进一步探索基于半无限维循环理论的Floer同源性的新基础。 这似乎导致了理论的急剧简化。 PI希望与另一名学生Ben Mares一起开始将N=4超对称杨-米尔斯方程的数学理论付诸实践。 最后,与第三个学生,蒂莫西·阮,他希望了解双曲杨米尔斯方程,特别是在3+ 1维。模型物理学家已经建立了理解高能物理中的粒子,如杨米尔斯和塞伯格-威滕方程,已被证明是一个来源,许多令人兴奋的发展,以及数学。 最值得注意的是,这些模型在理解三维和四维现象方面发挥了至关重要的作用,这些现象似乎仍然无法用其他方法来理解。 PI一直是这些模型的数学发展的领导者,并将继续在这些模型的一些不同方向的研究。 彼得·克朗海默(Peter Kronheimer)的一个项目试图将两种完全不同的表面模型联系起来。 另一个目的是开发新的数学基础,探索这些模型,并有望导致一个很大的简化,在严格的数学构造这些模型。 最后,Mrowka将与一些学生一起探索新的模型,希望它们也能产生有趣的数学结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomasz Mrowka其他文献

Tomasz Mrowka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomasz Mrowka', 18)}}的其他基金

New tools for gauge theory in dimensions 3 and 4
3 维和 4 维规范理论的新工具
  • 批准号:
    2105512
  • 财政年份:
    2021
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Continuing Grant
Gauge Theory and Trivalent Graphs in Three-Manifolds
三流形中的规范理论和三价图
  • 批准号:
    1808794
  • 财政年份:
    2018
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Continuing Grant
Instantons, low dimensional topology and knotted graphs
瞬子、低维拓扑和打结图
  • 批准号:
    1406348
  • 财政年份:
    2014
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Geometry and Topology
EMSW21-RTG:几何和拓扑
  • 批准号:
    0943787
  • 财政年份:
    2010
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Continuing Grant
Conference: Perspectives in Mathematics and Physics
会议:数学和物理的观点
  • 批准号:
    0928515
  • 财政年份:
    2009
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Standard Grant
Low dimensional topology and invariants from symplectic geometry, gauge theory, and quantum algebra
辛几何、规范理论和量子代数的低维拓扑和不变量
  • 批准号:
    0706979
  • 财政年份:
    2007
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Standard Grant
Mathematical Problems in General Relativity
广义相对论中的数学问题
  • 批准号:
    0302748
  • 财政年份:
    2003
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Standard Grant
Low Dimensional and Semi-infinite Dimensional Topology
低维和半无限维拓扑
  • 批准号:
    0206485
  • 财政年份:
    2002
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Continuing Grant
Seiberg-Witten and Instanton Floer Homologies
Seiberg-Witten 和 Instanton Floer 同源性
  • 批准号:
    9802480
  • 财政年份:
    1998
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Standard Grant
Low Dimensional Topology via Differential Equations
通过微分方程的低维拓扑
  • 批准号:
    9803166
  • 财政年份:
    1998
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Continuing grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Standard Grant
Problems in low-dimensional topology
低维拓扑问题
  • 批准号:
    2304856
  • 财政年份:
    2023
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Continuing Grant
Re-examination of classical problems in low-dimensional topology from higher invariants
从更高的不变量重新审视低维拓扑中的经典问题
  • 批准号:
    23K03110
  • 财政年份:
    2023
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Low-dimensional topology and links of singularities
低维拓扑和奇点链接
  • 批准号:
    2304080
  • 财政年份:
    2023
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Standard Grant
Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
  • 批准号:
    2304877
  • 财政年份:
    2023
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Standard Grant
CAREER: Low dimensional topology via Floer theory
职业:通过弗洛尔理论的低维拓扑
  • 批准号:
    2238103
  • 财政年份:
    2023
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Continuing Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
  • 批准号:
    2237131
  • 财政年份:
    2023
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Continuing Grant
New techniques and invariants in low-dimensional topology
低维拓扑中的新技术和不变量
  • 批准号:
    FT230100092
  • 财政年份:
    2023
  • 资助金额:
    $ 83.97万
  • 项目类别:
    ARC Future Fellowships
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 83.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了