Instantons, low dimensional topology and knotted graphs
瞬子、低维拓扑和打结图
基本信息
- 批准号:1406348
- 负责人:
- 金额:$ 47.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High energy physicists believe that the Yang-Mills Equations model the behavior of quarks. The Yang-Mills Equations turn out to have a remarkably rich mathematical structure. These equations enable the study of models of space-time inaccessible by other means and in addition give tools for the study of the topological structure of DNA. The PI will continue his research on the Yang-Mills equations and their connections to many different parts of mathematics, the study of nonlinear partial differential equations, low dimensional topology, algebraic geometry, representation theory and graph theory. The PI with study Floer homology invariants for three manifolds and knotted graphs in them. In particular with Peter Kronheimer, the PI is studying a family of Floer homology theories built from connections with a prescribed singularity along knotted graphs in three manifolds. Certain versions of these theories appear to be related to Khovanov-Rozansky SL(N)-homology for foams and the relations will be explored and elucidated. Other versions point to theories more general than Khovanov-Rozansky homology. Yet another rather delicate version appears to have bearing on questions of tri-colorability of spacial graphs, and in particular appears likely to provide novel insight to the question of tri-colorability of planar graphs.
高能物理学家认为杨-米尔斯方程模拟了夸克的行为。杨-米尔斯方程具有非常丰富的数学结构。这些方程使研究模型的时空无法通过其他手段,此外还提供了工具的研究拓扑结构的DNA。PI将继续他的研究杨米尔斯方程及其连接到数学的许多不同部分,非线性偏微分方程的研究,低维拓扑,代数几何,表示论和图论。 PI研究了三个流形和其中的纽结图的Floer同调不变量。特别是与彼得Kronheimer,PI正在研究一个家庭的弗洛尔同源理论建立的连接与一个规定的奇点沿着打结的图形在三个流形。 这些理论的某些版本似乎与泡沫的Khovanov-Rozansky SL(N)-同源性有关,并将探讨和阐明这种关系。其他版本指向比Khovanov-Rozansky同源性更普遍的理论。 然而,另一个相当微妙的版本似乎对空间图的三色性问题有影响,特别是似乎有可能提供新的见解,平面图的三色性问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tomasz Mrowka其他文献
Tomasz Mrowka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tomasz Mrowka', 18)}}的其他基金
New tools for gauge theory in dimensions 3 and 4
3 维和 4 维规范理论的新工具
- 批准号:
2105512 - 财政年份:2021
- 资助金额:
$ 47.63万 - 项目类别:
Continuing Grant
Gauge Theory and Trivalent Graphs in Three-Manifolds
三流形中的规范理论和三价图
- 批准号:
1808794 - 财政年份:2018
- 资助金额:
$ 47.63万 - 项目类别:
Continuing Grant
EMSW21-RTG: Geometry and Topology
EMSW21-RTG:几何和拓扑
- 批准号:
0943787 - 财政年份:2010
- 资助金额:
$ 47.63万 - 项目类别:
Continuing Grant
Conference: Perspectives in Mathematics and Physics
会议:数学和物理的观点
- 批准号:
0928515 - 财政年份:2009
- 资助金额:
$ 47.63万 - 项目类别:
Standard Grant
Low Dimensional Topology and Gauge Theory
低维拓扑和规范论
- 批准号:
0805841 - 财政年份:2008
- 资助金额:
$ 47.63万 - 项目类别:
Continuing Grant
Low dimensional topology and invariants from symplectic geometry, gauge theory, and quantum algebra
辛几何、规范理论和量子代数的低维拓扑和不变量
- 批准号:
0706979 - 财政年份:2007
- 资助金额:
$ 47.63万 - 项目类别:
Standard Grant
Mathematical Problems in General Relativity
广义相对论中的数学问题
- 批准号:
0302748 - 财政年份:2003
- 资助金额:
$ 47.63万 - 项目类别:
Standard Grant
Low Dimensional and Semi-infinite Dimensional Topology
低维和半无限维拓扑
- 批准号:
0206485 - 财政年份:2002
- 资助金额:
$ 47.63万 - 项目类别:
Continuing Grant
Seiberg-Witten and Instanton Floer Homologies
Seiberg-Witten 和 Instanton Floer 同源性
- 批准号:
9802480 - 财政年份:1998
- 资助金额:
$ 47.63万 - 项目类别:
Standard Grant
Low Dimensional Topology via Differential Equations
通过微分方程的低维拓扑
- 批准号:
9803166 - 财政年份:1998
- 资助金额:
$ 47.63万 - 项目类别:
Continuing grant
相似国自然基金
骨髓微环境中正常造血干/祖细胞新亚群IL7Rα(-)LSK(low)细胞延缓急性髓系白血病进程的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
- 批准号:82371631
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Ni-20Cr合金梯度纳米结构的低温构筑及其腐蚀行为研究
- 批准号:52301123
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
LIPUS促进微环境巨噬细胞释放CCL2诱导尿道周围平滑肌祖细胞定植与分化的机制研究
- 批准号:82370780
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
- 批准号:82271095
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
- 批准号:82270883
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
- 批准号:82270588
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Standard Grant
Engineering Future Quantum Technologies in Low-Dimensional Systems
低维系统中的未来量子技术工程
- 批准号:
MR/X006077/1 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Fellowship
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Continuing Grant
Low-dimensional material-based nanolaser using photonic bound states in the continuum
使用连续体中的光子束缚态的基于低维材料的纳米激光器
- 批准号:
23K26155 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
3DIr4E: Three-Dimensional low Ir loading anodes For proton exchange membrane water Electrolyzers
3DIr4E:用于质子交换膜水电解槽的三维低 Ir 负载阳极
- 批准号:
EP/Z001382/1 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Fellowship
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
- 批准号:
EP/Y003276/1 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Research Grant
CAREER: Photovoltaic Devices with Earth-Abundant Low Dimensional Chalcogenides
职业:具有地球丰富的低维硫属化物的光伏器件
- 批准号:
2413632 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Continuing Grant
Digital photonics exploiting optical nonlinearities of low-dimensional nano-materials
利用低维纳米材料光学非线性的数字光子学
- 批准号:
23H00174 - 财政年份:2023
- 资助金额:
$ 47.63万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
- 批准号:
2301580 - 财政年份:2023
- 资助金额:
$ 47.63万 - 项目类别:
Standard Grant