Singlet Fission, Triplet Upconversion, and Thermally-Activated Delayed Fluorescence: Controlling Exciton Dynamics with Metal-Organic Frameworks
单线态裂变、三线态上转换和热激活延迟荧光:用金属有机框架控制激子动力学
基本信息
- 批准号:2105495
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical summaryUnderstanding and controlling the interaction of light with matter is of fundamental importance for a number of technologies including solar photovoltaic cells, which absorb light to produce electricity, and light-emitting diodes, which use electricity to produce light. The processes that control the efficiency of these modern-day devices depend on many variables. Some of these variables, such as the structure of the molecules that make up the devices, we can control by molecular design. However, some variables are still difficult to control because they depend on how molecules are arranged spatially with respect to each other, rather than the individual structure of each molecule. This supra-molecular arrangement cannot typically be dictated by traditional chemical synthesis. With this project, supported by the Solid State and Materials Chemistry Program and the Electronic and Photonic Materials Program in the Division of Materials Research, Prof. Dinca and his research group tackle this challenge: to ultimately control how molecules are arranged with respect to each other such that when light interacts with the solids made by these molecules, the energy formed, called an exciton, can be quantified and directed. This provides a deeper understanding of how energy is transported within solids, to ultimately provide a blueprint to increase the efficiency of modern devices such as organic photovoltaics, light-emitting diodes, and other optical devices. As part of this award the principal investigator also provides training for graduate and undergraduate students in issues related broadly to synthesis of materials, as well as photophysical investigations and related analytical techniques, and engages in outreach activities in the Boston area.Technical summaryExcitons are bound electron-hole pairs that form when light interacts with matter. Although much is understood about how excitons form and how they travel within solids, little is known about how to control them. As such, despite the importance of exciton dynamics for determining efficiencies in a range of technologies from solar cells to light-emitting diodes and organic lasers, there are no clear synthetic handles on controlling the relative orientation of the organic components that give rise to excitons. Indeed, the distance and angles between chromophore molecules in the solid state, is intimately involved in determining exciton diffusion and lifetimes, but current techniques and materials do not allow systematic control of these metrics. This project, supported by the Solid State and Materials Chemistry Program and the Electronic and Photonic Materials Program in the Division of Materials Research investigates a class of solids where the distance and the angles between organic molecules can be systematically tuned even in the sub-angstrom regime called metal-organic frameworks. Prof. Dinca and his research group use metal-organic frameworks to demonstrate the ability to control exciton formation and dynamics. In particular, this project focuses on three important processes involving excitons: singlet fission, triplet upconversion, and thermally-activated delayed fluorescence. All three processes depend critically on the relative orientation of neighboring organic molecules, as well as on the molecular conformation or shape of the particular chromophore involved in light absorption.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述理解和控制光与物质的相互作用对于包括吸收光以产生电的太阳能光伏电池和使用电以产生光的发光二极管的许多技术具有根本重要性。控制这些现代设备效率的过程取决于许多变量。其中一些变量,例如组成器件的分子结构,我们可以通过分子设计来控制。然而,一些变量仍然难以控制,因为它们取决于分子如何在空间上相对于彼此排列,而不是每个分子的个体结构。这种超分子排列通常不能由传统的化学合成来决定。通过该项目,由材料研究部的固态和材料化学计划以及电子和光子材料计划支持,Dinca教授和他的研究小组解决了这一挑战:最终控制分子如何相互排列,以便当光与这些分子制成的固体相互作用时,形成的能量,称为激子,可以量化和定向。这提供了对能量如何在固体中传输的更深入理解,最终提供了提高现代设备(如有机光致发光器件,发光二极管和其他光学设备)效率的蓝图。作为该奖项的一部分,首席研究员还为研究生和本科生提供与材料合成广泛相关的问题的培训,以及物理学调查和相关分析技术,并在波士顿地区从事推广活动。技术摘要激子是光与物质相互作用时形成的束缚电子空穴对。尽管人们对激子的形成和它们在固体中的运动有很多了解,但对如何控制它们却知之甚少。因此,尽管激子动力学对于确定从太阳能电池到发光二极管和有机激光器的一系列技术中的效率的重要性,但是对于控制产生激子的有机组分的相对取向没有明确的合成处理。实际上,固态发色团分子之间的距离和角度密切涉及确定激子扩散和寿命,但是当前的技术和材料不允许系统地控制这些度量。该项目由材料研究部的固态和材料化学计划以及电子和光子材料计划支持,研究了一类固体,其中有机分子之间的距离和角度可以系统地调整,即使在亚埃制度中也称为金属有机框架。Dinca教授和他的研究小组使用金属有机框架来证明控制激子形成和动力学的能力。特别是,该项目侧重于涉及激子的三个重要过程:单线态裂变,三线态上转换和热激活延迟荧光。所有这三个过程都依赖于相邻有机分子的相对取向,以及参与光吸收的特定发色团的分子构象或形状。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reversible topochemical polymerization and depolymerization of a crystalline 3D porous organic polymer with C–C bond linkages
- DOI:10.1016/j.chempr.2022.07.028
- 发表时间:2022-08
- 期刊:
- 影响因子:23.5
- 作者:Chenyue Sun;Julius J. Oppenheim;Grigorii Skorupskii;Luming Yang;M. Dincǎ
- 通讯作者:Chenyue Sun;Julius J. Oppenheim;Grigorii Skorupskii;Luming Yang;M. Dincǎ
Solid‐State Investigation, Storage, and Separation of Pyrophoric PH 3 and P 2 H 4 with α‐Mg Formate
使用α-甲酸镁对发火 PH 3 和 P 2 H 4 进行固态研究、储存和分离
- DOI:10.1002/anie.202217534
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Widera, Anna;Thöny, Debora;Aebli, Marcel;Oppenheim, Julius Jacob;Andrews, Justin L.;Eiler, Frederik;Wörle, Michael;Schönberg, Hartmut;Weferling, Norbert;Dincǎ, Mircea
- 通讯作者:Dincǎ, Mircea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mircea Dinca其他文献
Mircea Dinca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mircea Dinca', 18)}}的其他基金
CAREER: Small Molecule Redox Reactivity at MOF Secondary Building Units
职业:MOF 二级建筑单元的小分子氧化还原反应
- 批准号:
1452612 - 财政年份:2015
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
相似国自然基金
活体动物线粒体biogenesis、fission及fusion对肝脏再生中能量供应影响机制的研究
- 批准号:81470878
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
线粒体fission/fusion对脑缺血后细胞能量代谢及兴奋性氨基酸释放的影响
- 批准号:81000487
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Theoretical approach to weakly bound triplet-triplet multiexciton in intramolecular singlet fission chromophores
分子内单线裂变发色团中弱结合三线态-三线态多激子的理论方法
- 批准号:
2301372 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Microscopic description of nuclear fission based on the generator coordinate method
基于发生器坐标法的核裂变微观描述
- 批准号:
23KJ1212 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Dynamin-related protein 1 and mitochondrial fission adapters regulate presynaptic function
动力相关蛋白 1 和线粒体裂变接头调节突触前功能
- 批准号:
10660812 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Regulation of Dynamin 2 expression, mitochondrial targeting, and evaluation of its role in mitochondrial fission: Implications for pulmonary arterial hypertension
Dynamin 2 表达的调节、线粒体靶向及其在线粒体裂变中的作用评估:对肺动脉高压的影响
- 批准号:
489491 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Operating Grants
Nuclear data measurements at n_TOF for fusion and fission applications
用于聚变和裂变应用的 n_TOF 核数据测量
- 批准号:
2904692 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Studentship
How groups in a group move: Understanding coordination of fission fusion dynamics of chimpanzees in a Savannah-Woodland mosaic
群体中的群体如何移动:了解萨凡纳-林地马赛克中黑猩猩裂变融合动力学的协调
- 批准号:
2843351 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Studentship
Postdoctoral Fellowship: MPS-Ascend: Increasing the Rate of Singlet Fission through Strong Coupling
博士后奖学金:MPS-Ascend:通过强耦合提高单线态裂变速率
- 批准号:
2316063 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Fellowship Award
Mitochondrial Fission, Calcium, ROS in Right Ventricular Fibrosis
右心室纤维化中的线粒体裂变、钙、ROS
- 批准号:
10734675 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Physical, cellular, and molecular control of tissue fission and fusion
组织裂变和融合的物理、细胞和分子控制
- 批准号:
10724005 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Highly efficient organic photocatalytic system using singlet fission
利用单线态裂变的高效有机光催化系统
- 批准号:
23K04708 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Grant-in-Aid for Scientific Research (C)