The Topology of Contact Type Hypersurfaces and Related Topics
接触型超曲面拓扑及相关主题
基本信息
- 批准号:2105525
- 负责人:
- 金额:$ 15.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project, jointly funded by Topology and the Established Program to Stimulate Competitive Research (EPSCoR), centers around the geometry and topology of 3- and 4-dimensional spaces, mathematical objects known as symplectic and contact structures, and interactions between these. Symplectic and contact geometries are not just a natural language for some aspects of classical physics, but also naturally arise and find applications in many areas of modern mathematics and mathematical physics. The techniques spring from gauge theory, Floer theory, holomorphic curve techniques, and the theorems and conjectures find applications and connections in several fields, such as: smooth manifold topology, hyperbolic geometry, dynamics, complex analysis in several variables, and complex algebraic geometry. Building on his extensive and collaborative research, the PI aims to study many unique questions and conjectures that sit at the intersection of symplectic/contact topology and smooth manifold topology in low dimensions, and complex analysis. The proposed research and its outcomes will greatly impact our current understanding of geometric topology in low dimensions. As an integral part of this project, the PI will help mentor graduate students and postdoctoral fellows in his research area, maintain an active topology group at the University of Alabama by organizing seminars, workshops and conferences, and devote time to initiate a math circle in Tuscaloosa. The PI will investigate underlying connections between low dimensional smooth manifolds and certain geometric/analytic structures defined on them. The first long-term research objective of this project is to understand symplectic and complex geometric aspects of 3-manifold embedding problem in 4-space, and related symplectic/holomorphic rigidity phenomenon that develops. Specifically, the PI will work towards a complete resolution of Gompf’s conjecture that such embeddings are impossible for non-trivial Brieskorn spheres, determining the topology of contact type hypersurfaces and rationally convex Stein domains with prescribed boundary, and exploring their implications for smooth 4-manifold topology. The second long-term research objective concerns contributing concrete and satisfying connections between gauge theoretical invariants, symplectic/contact geometry and hyperbolic geometry. Towards this latter project, the PI will specifically work on two outstanding problems of existence and classification of tight and fillable contact structures on closed, oriented 3-manifolds. Many special cases of the latter project are understood due to work of the PI with his collaborators and other researchers in the area, but what links them remains to be explored.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由拓扑学和已建立的激励竞争研究计划(EPSCoR)共同资助,围绕三维和四维空间的几何和拓扑、称为辛结构和接触结构的数学对象,以及它们之间的相互作用。辛几何和接触几何不仅是经典物理某些方面的自然语言,而且在现代数学和数学物理的许多领域中也自然而然地产生和应用。这些技巧起源于规范理论、Floer理论、全纯曲线技术,这些定理和猜想在光滑流形拓扑、双曲几何、动力学、多变量复变分析和复代数几何等领域都有应用和联系。在他广泛和协作研究的基础上,PI旨在研究许多位于低维辛拓扑/接触拓扑和光滑流形拓扑的交点上的独特问题和猜想,以及复杂的分析。本文的研究成果将极大地影响我们目前对低维几何拓扑的理解。作为该项目的一个组成部分,PI将帮助指导他研究领域的研究生和博士后研究员,通过组织研讨会、研讨会和会议来维持阿拉巴马大学活跃的拓扑学小组,并投入时间在塔斯卡卢萨建立一个数学圈。PI将调查低维光滑流形和定义在其上的某些几何/解析结构之间的潜在联系。这个项目的第一个长期研究目标是了解三维流形嵌入问题的辛和复几何方面,以及与之相关的辛/全纯刚性现象。具体地说,PI将致力于彻底解决Gompf的猜想,即这种嵌入对于非平凡的Brieskorn球面是不可能的,确定具有指定边界的接触型超曲面和有理凸Stein域的拓扑,并探索它们对光滑4-流形拓扑的影响。第二个长期研究目标是在规范理论不变量、辛/接触几何和双曲几何之间建立具体而令人满意的联系。对于后一个项目,PI将专门研究闭合的、定向的3-流形上紧密和可填充接触结构的存在和分类这两个突出问题。后一个项目的许多特殊情况都是由于PI与他的合作者和该领域的其他研究人员的工作而被理解的,但它们之间的联系仍有待探索。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On contact type hypersurfaces in 4-space
- DOI:10.1007/s00222-021-01083-9
- 发表时间:2020-08
- 期刊:
- 影响因子:3.1
- 作者:Thomas E. Mark;B. Tosun
- 通讯作者:Thomas E. Mark;B. Tosun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bulent Tosun其他文献
Bulent Tosun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bulent Tosun', 18)}}的其他基金
CAREER: Symplectic and Holomorphic Convexity in 4-dimensions
职业:4 维辛凸性和全纯凸性
- 批准号:
2144363 - 财政年份:2022
- 资助金额:
$ 15.64万 - 项目类别:
Continuing Grant
相似海外基金
Optimization of contact resistance in n-type metal phthalocyanine organic thin-film transistors
n型金属酞菁有机薄膜晶体管接触电阻的优化
- 批准号:
547836-2020 - 财政年份:2022
- 资助金额:
$ 15.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Optimization of contact resistance in n-type metal phthalocyanine organic thin-film transistors
n型金属酞菁有机薄膜晶体管接触电阻的优化
- 批准号:
547836-2020 - 财政年份:2021
- 资助金额:
$ 15.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of the disc unit for yarn processing using non-contact type yarn form inspection system in online
开发用于纱线加工的圆盘装置,使用非接触式在线纱线形状检查系统
- 批准号:
21K02123 - 财政年份:2021
- 资助金额:
$ 15.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization of contact resistance in n-type metal phthalocyanine organic thin-film transistors
n型金属酞菁有机薄膜晶体管接触电阻的优化
- 批准号:
547836-2020 - 财政年份:2020
- 资助金额:
$ 15.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Detection of contact-type failure of large-scale structure based on nonlinear wave modulation using multi-excitation using decentralized control
基于分散控制多激励非线性波调制的大型结构接触型故障检测
- 批准号:
20K14682 - 财政年份:2020
- 资助金额:
$ 15.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of teaching materials in the field of ball games incorporating the viewpoint of physical contact in goal type on school physical education class
学校体育课中融入球门式身体接触观点的球类教材开发
- 批准号:
19K11630 - 财政年份:2019
- 资助金额:
$ 15.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Detection of contact-type failure based on nonlinear wave modulation using ultrasonic vibration driven by self-excitation
基于自激驱动超声振动非线性波调制的接触式故障检测
- 批准号:
18K13716 - 财政年份:2018
- 资助金额:
$ 15.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on ultimate fine friction and contact-type nanomechanical devices using single-atom sharpened metallic probes
使用单原子尖锐金属探针研究极限精细摩擦和接触型纳米机械装置
- 批准号:
18K18799 - 财政年份:2018
- 资助金额:
$ 15.64万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Absolute measurement of long micro slit width by non-contact type twin micro-probing systems with high speed scanning of twin micro probe and real time space calibration
采用双微探针高速扫描和实时空间校准的非接触式双微探针系统对长微缝宽度进行绝对测量
- 批准号:
16K05999 - 财政年份:2016
- 资助金额:
$ 15.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Acoustic imaging using air-coupled focus-type P(VDF/TrFE) transducers on non contact ultrasound by through-transmission method.
使用空气耦合聚焦型 P(VDF/TrFE) 换能器通过透射方法对非接触式超声进行声学成像。
- 批准号:
16K06378 - 财政年份:2016
- 资助金额:
$ 15.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)