Collaborative Research: HCC: Medium: Differentiable Rendering for Computer Graphics
合作研究:HCC:媒介:计算机图形学的可微渲染
基本信息
- 批准号:2105806
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Creating realistic images in computer graphics has historically relied on accurately computing the values at each point or pixel in the image based on physically accurate simulation of lighting in the scene, but recently it has become clear that simply computing image values is not adequate. One needs to also be able to understand how these values change with changes in the environment, for example as the sun moves across the sky, a door is opened letting light into the scene, or the material properties of an object are gradually changed from velvet to metallic. Mathematically, this involves computing the derivatives of the image to determine how it changes with respect to the input parameters. This research will create a class of differentiable renderers that compute both images and their derivatives. Project outcomes will have broad impact because the computation of derivatives is increasingly central to many areas of computer graphics, computer vision, robotics and machine learning, with potential benefit to applications as diverse as perception control in self-driving cars and robots, optimization of indoor lighting for architecture, fabrication of 3D objects with a desired appearance, statistics and epidemiology. Additional impact will derive from the fact that the PIs are educators committed to broadening participation in computing who participate in early research scholars programs and will develop new online courses in rendering.Computing the derivatives or gradients of general light transport involves tackling fundamental challenges of differential calculus, Monte Carlo integration, signal processing, automatic differentiation, and metaprogramming systems. One challenge is in handling discontinuities of various forms, which lead to Dirac delta terms that require careful and analytic treatment that cannot be provided by traditional automatic differentiation. Even for the smooth variation, computing gradients involves a large number of intermediate variables that necessitate tradeoffs across bias, variance, compute and memory. Moreover, full generality requires differentiable rendering in new representations such as implicit surfaces and procedural materials, as well as new problem domains such as transient rendering for non-line-of-sight imaging and geometrical diffraction for acoustics. One also needs to effectively apply the gradients for optimization in inverse problems. This project will develop a broad transformative agenda, seeking to enable differentiable renderers to efficiently reconstruct billions of varied primitives from millions of pixels under general and diverse light transport situations. The research plan consists of four interconnected components involving computational foundations and efficient algorithms for solving visibility gradients including: analytic and area sampling methods; a unified system for exploring computational and memory tradeoffs in differentiable rendering algorithms; generalizations to new physical phenomena such as transient rendering and geometrical diffraction; and advances in inverse problems and deep learning including new approaches to continuous optimization involving Euler-Lagrange equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在计算机图形学中创建逼真的图像在历史上依赖于基于场景中的照明的物理上精确的模拟来精确地计算图像中的每个点或像素处的值,但是最近已经变得清楚的是,简单地计算图像值是不够的。人们还需要能够理解这些值如何随着环境的变化而变化,例如,当太阳在天空中移动时,打开一扇门让光线进入场景,或者物体的材料属性逐渐从天鹅绒变为金属。 在数学上,这涉及计算图像的导数以确定其相对于输入参数如何变化。 这项研究将创建一类可微分渲染器,计算图像及其衍生物。 项目成果将产生广泛的影响,因为导数的计算在计算机图形学、计算机视觉、机器人和机器学习的许多领域越来越重要,对各种应用都有潜在的好处,如自动驾驶汽车和机器人的感知控制、建筑室内照明的优化、具有理想外观的3D物体的制造、统计学和流行病学。 其他影响将来自于这样一个事实,即PI是教育工作者,致力于扩大参与计算谁参加早期的研究学者计划,并将开发新的在线课程在rendering.Computing一般光传输的导数或梯度涉及解决微分学,蒙特卡罗积分,信号处理,自动微分和元编程系统的基本挑战。 一个挑战是在处理各种形式的不连续性,这导致狄拉克δ项,需要仔细和分析的处理,不能提供传统的自动微分。 即使对于平滑变化,计算梯度也涉及大量中间变量,这些中间变量需要在偏差、方差、计算和存储器之间进行权衡。 此外,充分的一般性需要微分渲染在新的表示,如隐式表面和程序材料,以及新的问题域,如瞬态渲染的非视线成像和几何衍射声学。 人们还需要有效地应用梯度来优化逆问题。 该项目将制定一个广泛的变革议程,寻求使可区分的渲染器能够在一般和不同的光传输情况下从数百万像素有效地重建数十亿个不同的图元。 该研究计划包括四个相互关联的组成部分,涉及计算基础和解决可见度梯度的有效算法,包括:分析和区域采样方法;探索可微渲染算法中计算和内存权衡的统一系统;对新物理现象的概括,如瞬态渲染和几何衍射;以及逆问题和深度学习的进展,包括涉及欧拉的连续优化的新方法,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的评估来支持。影响审查标准。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentiable time-gated rendering
可微时间选通渲染
- DOI:10.1145/3478513.3480489
- 发表时间:2021
- 期刊:
- 影响因子:6.2
- 作者:Wu, Lifan;Cai, Guangyan;Ramamoorthi, Ravi;Zhao, Shuang
- 通讯作者:Zhao, Shuang
Warped-Area Reparameterization of Differential Path Integrals
微分路径积分的扭曲面积重新参数化
- DOI:10.1145/3618330
- 发表时间:2023
- 期刊:
- 影响因子:6.2
- 作者:Xu, Peiyu;Bangaru, Sai;Li, Tzu-Mao;Zhao, Shuang
- 通讯作者:Zhao, Shuang
Differentiable Rendering of Neural SDFs through Reparameterization
通过重新参数化进行神经 SDF 的可微渲染
- DOI:10.1145/3550469.3555397
- 发表时间:2022
- 期刊:
- 影响因子:6.2
- 作者:Bangaru, Sai Praveen;Gharbi, Michael;Luan, Fujun;Li, Tzu-Mao;Sunkavalli, Kalyan;Hasan, Milos;Bi, Sai;Xu, Zexiang;Bernstein, Gilbert;Durand, Fredo
- 通讯作者:Durand, Fredo
Discontinuity-Aware 2D Neural Fields
- DOI:10.1145/3618379
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Yash Belhe;Michaël Gharbi;Matthew Fisher;Iliyan Georgiev;Ravi Ramamoorthi;Tzu-Mao Li
- 通讯作者:Yash Belhe;Michaël Gharbi;Matthew Fisher;Iliyan Georgiev;Ravi Ramamoorthi;Tzu-Mao Li
NeuSample: Importance Sampling for Neural Materials
- DOI:10.1145/3588432.3591524
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Bing Xu;Liwen Wu;Miloš Hašan;Fujun Luan;Iliyan Georgiev;Zexiang Xu;R. Ramamoorthi
- 通讯作者:Bing Xu;Liwen Wu;Miloš Hašan;Fujun Luan;Iliyan Georgiev;Zexiang Xu;R. Ramamoorthi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravi Ramamoorthi其他文献
Modeling Membrane Dynamics in 3D using Discrete Differential Geometry
- DOI:
10.1016/j.bpj.2020.11.523 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Cuncheng Zhu;Christopher T. Lee;Ravi Ramamoorthi;Padmini Rangamani - 通讯作者:
Padmini Rangamani
Efficient image-based methods for rendering soft shadows
用于渲染软阴影的高效基于图像的方法
- DOI:
10.1145/344779.344954 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Maneesh Agrawala;Ravi Ramamoorthi;A. Heirich;Laurent Moll - 通讯作者:
Laurent Moll
Supplementary: A Theory of Topological Derivatives for Inverse Rendering of Geometry
补充:几何逆向绘制的拓扑导数理论
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ishit Mehta;Manmohan Chandraker;Ravi Ramamoorthi - 通讯作者:
Ravi Ramamoorthi
From the Rendering Equation to Stratified Light Transport Inversion
- DOI:
10.1007/s11263-011-0467-6 - 发表时间:
2011-06-07 - 期刊:
- 影响因子:9.300
- 作者:
Tian-Tsong Ng;Ramanpreet Singh Pahwa;Jiamin Bai;Kar-Han Tan;Ravi Ramamoorthi - 通讯作者:
Ravi Ramamoorthi
Residual path integrals for re-rendering
用于重新渲染的剩余路径积分
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bing Xu;Tzu;Iliyan Georgiev;Trevor Hedstrom;Ravi Ramamoorthi - 通讯作者:
Ravi Ramamoorthi
Ravi Ramamoorthi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravi Ramamoorthi', 18)}}的其他基金
Collaborative Research: HCC: Medium: Neural Materials for Realistic Computer Graphics
合作研究:HCC:媒介:用于逼真计算机图形的神经材料
- 批准号:
2212085 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Fast Photorealistic Computer Graphics Rendering of Non-Smooth Surfaces
CHS:媒介:协作研究:非光滑表面的快速真实感计算机图形渲染
- 批准号:
1703957 - 财政年份:2017
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Detailed Shape and Reflectance Capture with Light Field Cameras
CHS:小型:协作研究:使用光场相机捕获详细形状和反射率
- 批准号:
1617234 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
HCC: Large: Collaborative Research: Beyond Flat Images: Acquiring, Processing, and Fabricating Visually Rich Material Appearance
HCC:大型:协作研究:超越平面图像:获取、处理和制造视觉丰富的材料外观
- 批准号:
1451828 - 财政年份:2014
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Sampling and Reconstruction for Computer Graphics Rendering and Imaging
CHS:小型:协作研究:计算机图形渲染和成像的采样和重建
- 批准号:
1420146 - 财政年份:2014
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Sampling and Reconstruction for Computer Graphics Rendering and Imaging
CHS:小型:协作研究:计算机图形渲染和成像的采样和重建
- 批准号:
1451830 - 财政年份:2014
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CGV: Small: Collaborative Research: Sparse Reconstruction and Frequency Analysis for Computer Graphics Rendering and Imaging
CGV:小型:协作研究:计算机图形渲染和成像的稀疏重建和频率分析
- 批准号:
1115242 - 财政年份:2011
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
HCC: Large: Collaborative Research: Beyond Flat Images: Acquiring, Processing, and Fabricating Visually Rich Material Appearance
HCC:大型:协作研究:超越平面图像:获取、处理和制造视觉丰富的材料外观
- 批准号:
1011832 - 财政年份:2010
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CAREER: Mathematical and Computational Fundamentals of Visual Appearance for Computer Graphics
职业:计算机图形学视觉外观的数学和计算基础
- 批准号:
0924968 - 财政年份:2009
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: Theory and Algorithms for High Quality Real-Time Rendering and Lighting/Material Design in Computer Graphics
合作研究:计算机图形学中高质量实时渲染和灯光/材质设计的理论和算法
- 批准号:
0701775 - 财政年份:2007
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
- 批准号:
2327136 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: Aligning Robot Representations with Humans
合作研究:HCC:媒介:使机器人表示与人类保持一致
- 批准号:
2310757 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Bridging Research and Visualization Design Practice via a Sustainable Knowledge Platform
合作研究:HCC:小型:通过可持续知识平台桥接研究和可视化设计实践
- 批准号:
2147044 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
- 批准号:
2326998 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Computational Design and Application of Wearable Haptic Knits
合作研究:HCC:小型:可穿戴触觉针织物的计算设计与应用
- 批准号:
2301355 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: "Unboxing" Haptic Texture Perception: Closing the Loop from Skin Contact Mechanics to Novel Haptic Device
合作研究:HCC:媒介:“拆箱”触觉纹理感知:闭合从皮肤接触力学到新型触觉设备的循环
- 批准号:
2312153 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Understanding Online-to-Offline Sexual Violence through Data Donation from Users
合作研究:HCC:小型:通过用户捐赠的数据了解线上线下性暴力
- 批准号:
2401775 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302969 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Supporting Flexible and Safe Disability Representation in Social Virtual Reality
合作研究:HCC:小型:支持社交虚拟现实中灵活、安全的残疾表征
- 批准号:
2328183 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Computational Design and Application of Wearable Haptic Knits
合作研究:HCC:小型:可穿戴触觉针织物的计算设计与应用
- 批准号:
2301357 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant