Mathematics for Imaging with Waves

波成像数学

基本信息

  • 批准号:
    2105956
  • 负责人:
  • 金额:
    $ 27.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Inverse problems arise in all fields of science and technology when one seeks a cause for an observed effect or wants to produce a desired effect. The increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of inverse problems to real-world problems of growing complexity. This research will focus on inverse problems with applications that include a number of medical techniques as well as other problems in imaging, such as locating oil and mineral deposits in the Earth's substructure, creating of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, and many others. The familiar medical imaging technologies of computed tomography (CT) scans, magnetic resonance imaging (MRI) and ultrasound are examples where inverse problems have played a fundamental role and have helped to save lives.This research will develop the mathematical theory of several fundamental inverse problems. The first project deals with a relatively new medical imaging technique called electrical impedance tomography. In EIT, one attempts to determine an object's electrical properties by making voltage and current measurements at the boundary of the object. One potential application is in medical imaging, particularly in detecting pulmonary edema or a cancerous tumor since such anomalies have very different electrical properties in normal situations. The second project is travel time tomography. In this imaging technique, the Principal Investigator (PI) will probe the object with different types of waves, like electromagnetic waves or sound waves. By measuring the travel times of the waves going through the medium, the PI will attempt to determine the properties of the medium. The third project is an inverse problem arising in nonlinear acoustics. It has applications in ultrasound, particularly in a medical imaging technique called tissue harmonic imaging (THI). THI is a routinely used component of diagnostic ultrasonography (US), and higher-frequency harmonic waves produced by nonlinear fundamental US wave propagation in the method generate images containing fewer artifacts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当人们为观察到的结果寻找原因或想要产生预期的结果时,在所有科学和技术领域都会出现逆问题。计算能力的提高和强大算法的发展使得将反问题技术应用于日益复杂的现实世界问题成为可能。这项研究将重点关注应用中的逆问题,包括许多医疗技术以及成像中的其他问题,例如定位地球下层结构中的石油和矿藏,从望远镜数据中创建天体物理图像,寻找材料中的裂缝和界面,形状优化等等。计算机断层扫描(CT)、磁共振成像(MRI)和超声波等熟悉的医学成像技术都是逆问题发挥基本作用并帮助挽救生命的例子。这项研究将发展几个基本逆问题的数学理论。第一个项目涉及一种相对较新的医学成像技术,称为电阻抗断层扫描。在电子信息技术中,人们试图通过在物体的边界测量电压和电流来确定物体的电气特性。一个潜在的应用是医学成像,特别是检测肺水肿或癌性肿瘤,因为这些异常在正常情况下具有非常不同的电特性。第二个项目是旅行时间断层扫描。在这种成像技术中,首席研究员(PI)将用不同类型的波(如电磁波或声波)探测物体。通过测量波通过介质的传播时间,PI将试图确定介质的性质。第三个项目是非线性声学中出现的逆问题。它在超声波,特别是在医学成像技术称为组织谐波成像(THI)的应用。THI是超声诊断(US)的常规组成部分,该方法中非线性基波传播产生的高频谐波产生的图像包含较少的伪影。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recovery of wave speeds and density of mass across a heterogeneous smooth interface from acoustic and elastic wave reflection operators
  • DOI:
    10.1007/s13137-022-00199-1
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sombuddha Bhattacharyya;Maarten V. de Hoop;Vitaly Katsnelson;G. Uhlmann
  • 通讯作者:
    Sombuddha Bhattacharyya;Maarten V. de Hoop;Vitaly Katsnelson;G. Uhlmann
Single Pixel X-ray Transform and Related Inverse Problems
单像素X射线变换及相关反演问题
  • DOI:
    10.1137/21m1468103
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Lai, Ru-Yu;Uhlmann, Gunther;Zhai, Jian;Zhou, Hanming
  • 通讯作者:
    Zhou, Hanming
An inverse problem for a quasilinear convection–diffusion equation
拟线性对流扩散方程的反演问题
  • DOI:
    10.1016/j.na.2022.112921
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feizmohammadi, Ali;Kian, Yavar;Uhlmann, Gunther
  • 通讯作者:
    Uhlmann, Gunther
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gunther Uhlmann其他文献

On the summability of divergent power series solutions of certain first-order linear PDEs
关于某些一阶线性偏微分方程的发散幂级数解的可和性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Isakov;Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;T.Miyao;日比野 正樹
  • 通讯作者:
    日比野 正樹
1階偏微分方程式に対するCauchy-Kowalevsky の定理の不動点定理による証明
使用不动点定理证明一阶偏微分方程的柯西-科瓦列夫斯基定理
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;日比野 正樹
  • 通讯作者:
    日比野 正樹
Increasing stability of the inverse boundary value problem for the Schroedinger equation
提高薛定谔方程反边值问题的稳定性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Isakov;Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang
  • 通讯作者:
    Jenn-Nan Wang
Note on the one-dimensional Holstein-Hubbard model
关于一维 Holstein-Hubbard 模型的注释
  • DOI:
    10.1007/s10955-012-0466-1
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;日比野 正樹;Mervan Pasic and Satoshi Tanaka;鈴木政尋;Tadahiro Miyao
  • 通讯作者:
    Tadahiro Miyao
Regularity and multi-scale discretization of the solution construction of hyperbolic evolution equations with limited smoothness
  • DOI:
    10.1016/j.acha.2012.01.001
  • 发表时间:
    2012-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Maarten V. de Hoop;Sean F. Holman;Hart F. Smith;Gunther Uhlmann
  • 通讯作者:
    Gunther Uhlmann

Gunther Uhlmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gunther Uhlmann', 18)}}的其他基金

Conformal Geometry, Analysis, and Physics
共形几何、分析和物理
  • 批准号:
    2154127
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Applied Inverse Problems Conference 2019
2019年应用反问题会议
  • 批准号:
    1856116
  • 财政年份:
    2019
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Inverse Boundary Problems
逆边界问题
  • 批准号:
    1800453
  • 财政年份:
    2018
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Applied Inverse Problems 2014 Conference Finland
2014 年芬兰应用反问题会议
  • 批准号:
    1500517
  • 财政年份:
    2015
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
International Congress of Mathematical Physics 2015; Santiago, Chile; July 27-August 1, 2015
2015年国际数学物理大会;
  • 批准号:
    1505555
  • 财政年份:
    2015
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Applied Inverse Problems 2013 Conference
应用反问题2013年会议
  • 批准号:
    1310868
  • 财政年份:
    2013
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Inverse Boundary Problems
逆边界问题
  • 批准号:
    1265958
  • 财政年份:
    2013
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
International Conference on Inverse Problems and PDE Control
反问题和偏微分方程控制国际会议
  • 批准号:
    1201356
  • 财政年份:
    2012
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Workshop on Coupled-Physics Inverse Problems
耦合物理反问题研讨会
  • 批准号:
    1301825
  • 财政年份:
    2012
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
PASI on Inverse Problems and PDE Control;Valparaiso/Santiago, Chile; January 16-27, 2012
PASI 关于反问题和 PDE 控制;瓦尔帕莱索/圣地亚哥,智利;
  • 批准号:
    1122928
  • 财政年份:
    2011
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant

相似国自然基金

非小细胞肺癌Biomarker的Imaging MS研究新方法
  • 批准号:
    30672394
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319536
  • 财政年份:
    2023
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
A New Approach to Imaging by Waves
波成像的新方法
  • 批准号:
    2106255
  • 财政年份:
    2021
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Guiding, Localizing and IMaging confined GHz acoustic waves in GaN Elastic waveguides and Resonators for monolithically integrated RF front-ends
用于单片集成射频前端的 GaN 弹性波导和谐振器中的有限 GHz 声波的引导、定位和成像
  • 批准号:
    EP/V005286/1
  • 财政年份:
    2021
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Research Grant
Illuminating the heterogeneous Earth based on numerical simulations of seismic waves: from global tomography to subduction-zone imaging
基于地震波数值模拟揭示异质地球:从全球层析成像到俯冲带成像
  • 批准号:
    RGPIN-2016-06220
  • 财政年份:
    2020
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Discovery Grants Program - Individual
Illuminating the heterogeneous Earth based on numerical simulations of seismic waves: from global tomography to subduction-zone imaging
基于地震波数值模拟揭示异质地球:从全球层析成像到俯冲带成像
  • 批准号:
    RGPIN-2016-06220
  • 财政年份:
    2019
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Discovery Grants Program - Individual
Research on Real-time Imaging of Electromagnetic Waves Using Atomic Resonance
利用原子共振进行电磁波实时成像的研究
  • 批准号:
    19K15007
  • 财政年份:
    2019
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ultrasonic Imaging of Pre-tensioned Conrete Section Based on Extracting Ultrasonic Scattering Waves from Tendon
基于提取肌腱超声散射波的预张法混凝土截面超声成像
  • 批准号:
    18K04321
  • 财政年份:
    2018
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Illuminating the heterogeneous Earth based on numerical simulations of seismic waves: from global tomography to subduction-zone imaging
基于地震波数值模拟揭示异质地球:从全球层析成像到俯冲带成像
  • 批准号:
    RGPIN-2016-06220
  • 财政年份:
    2018
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Discovery Grants Program - Individual
Time-resolved imaging of GHz surface acoustic waves and controlling acoustic chirality
GHz 表面声波的时间分辨成像和控制声手性
  • 批准号:
    17H02807
  • 财政年份:
    2017
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了