Conformal Geometry, Analysis, and Physics
共形几何、分析和物理
基本信息
- 批准号:2154127
- 负责人:
- 金额:$ 4.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support for the conference "Conformal Geometry, Analysis, and Physics" to be held in Seattle from June 13-17, 2022. The field of conformal geometry has had rich interactions with both geometric analysis and physics, especially high-energy and condensed-matter physics, over the past three decades. The benefits have been bidirectional in both cases: conformal geometry has led to the development of new analytic tools infused by geometric intuitions, which in turn lead to the solution of important geometric problems. Similarly, physics is a source both of new problems and of important insights, while conformal geometry provides crucial tools in the solution of physical problems. This conference will bring together experts from all of these fields to share and discuss their research and benefit from each other's perspectives and tools. It is expected that the conference will stimulate further development in all three fields and cooperation across many kinds of boundaries. Facilitating entry of early-career researchers into dialog with all three areas is a particular goal for this event. A poster session will be held for students.Conformal geometry is the geometry of spaces where angles are defined, but not lengths. It has had a long and, recently, fast-growing relevance in physics, where it is a tool that provides new perspectives on many old phenomena. Conversely, physics has been a rich source of insights and problems in conformal geometry. For many years now, conformal geometry itself has provided some of the most compelling problems in geometric analysis, while techniques from analysis, scattering theory, and partial differential equations have enabled tremendous progress in the field. The primary goal of the conference is to bring together researchers from the three title areas whose work overlaps, in order to disseminate progress, share interesting problems, build relationships, and broaden perspectives. The conference will allow exposure to relevant state-of-the-art techniques in conformal geometry, analysis, and physics to be shared with other interested practitioners in each field. It will foster international collaboration between the US and other countries, and also collaboration between mathematicians and physicists. Junior participants will gain valuable insights, and relationships with more senior practitioners that may shape both their career and their mathematical (or physical) perspectives. Opportunity will be given for them to present their own work, and collaboration opportunities will exist between researchers at all levels. Most of the funding will be used to support junior mathematicians. Substantial effort will be made in recruiting women and members of other underrepresented groups in mathematics. The conference website is at https://personal.utdallas.edu/~sxm190098/graham65/ .This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为将于2022年6月13日至17日在西雅图举行的“共形几何,分析和物理”会议提供支持。在过去的三十年里,共形几何领域与几何分析和物理学,特别是高能物理和凝聚态物理有着丰富的相互作用。在这两种情况下的好处是双向的:保形几何导致了新的分析工具的发展注入几何直观,这反过来又导致解决重要的几何问题。同样,物理学是新问题和重要见解的来源,而保形几何提供了解决物理问题的关键工具。本次会议将汇集来自所有这些领域的专家,分享和讨论他们的研究,并从彼此的观点和工具中受益。预计会议将促进所有三个领域的进一步发展和跨越多种边界的合作。促进早期职业研究人员进入与所有三个领域的对话是本次活动的一个特殊目标。共形几何是定义了角而不是长度的空间几何。它在物理学中有着长期的、最近快速增长的相关性,它是一种工具,为许多旧现象提供了新的视角。相反,物理学一直是共形几何的见解和问题的丰富来源。多年来,共形几何本身提供了一些最引人注目的问题,在几何分析,而技术,散射理论和偏微分方程已经使该领域的巨大进步。会议的主要目标是将工作重叠的三个标题领域的研究人员聚集在一起,以传播进展,分享有趣的问题,建立关系并拓宽视野。会议将允许接触到相关的国家的最先进的技术,在共形几何,分析和物理与其他感兴趣的从业者在每个领域分享。它将促进美国和其他国家之间的国际合作,以及数学家和物理学家之间的合作。初级参与者将获得有价值的见解,以及与更高级从业者的关系,这可能会塑造他们的职业生涯和他们的数学(或物理)观点。他们将有机会展示自己的工作,各级研究人员之间将有合作机会。大部分资金将用于支持初级数学家。将作出巨大努力,招聘妇女和其他数学领域代表性不足的群体的成员。https://personal.utdallas.edu/~sxm190098/graham65/该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gunther Uhlmann其他文献
On the summability of divergent power series solutions of certain first-order linear PDEs
关于某些一阶线性偏微分方程的发散幂级数解的可和性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Victor Isakov;Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;T.Miyao;日比野 正樹 - 通讯作者:
日比野 正樹
1階偏微分方程式に対するCauchy-Kowalevsky の定理の不動点定理による証明
使用不动点定理证明一阶偏微分方程的柯西-科瓦列夫斯基定理
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;日比野 正樹 - 通讯作者:
日比野 正樹
Increasing stability of the inverse boundary value problem for the Schroedinger equation
提高薛定谔方程反边值问题的稳定性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Victor Isakov;Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang - 通讯作者:
Jenn-Nan Wang
Note on the one-dimensional Holstein-Hubbard model
关于一维 Holstein-Hubbard 模型的注释
- DOI:
10.1007/s10955-012-0466-1 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;日比野 正樹;Mervan Pasic and Satoshi Tanaka;鈴木政尋;Tadahiro Miyao - 通讯作者:
Tadahiro Miyao
Regularity and multi-scale discretization of the solution construction of hyperbolic evolution equations with limited smoothness
- DOI:
10.1016/j.acha.2012.01.001 - 发表时间:
2012-11-01 - 期刊:
- 影响因子:
- 作者:
Maarten V. de Hoop;Sean F. Holman;Hart F. Smith;Gunther Uhlmann - 通讯作者:
Gunther Uhlmann
Gunther Uhlmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gunther Uhlmann', 18)}}的其他基金
Applied Inverse Problems Conference 2019
2019年应用反问题会议
- 批准号:
1856116 - 财政年份:2019
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Applied Inverse Problems 2014 Conference Finland
2014 年芬兰应用反问题会议
- 批准号:
1500517 - 财政年份:2015
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
International Congress of Mathematical Physics 2015; Santiago, Chile; July 27-August 1, 2015
2015年国际数学物理大会;
- 批准号:
1505555 - 财政年份:2015
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Applied Inverse Problems 2013 Conference
应用反问题2013年会议
- 批准号:
1310868 - 财政年份:2013
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
International Conference on Inverse Problems and PDE Control
反问题和偏微分方程控制国际会议
- 批准号:
1201356 - 财政年份:2012
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Workshop on Coupled-Physics Inverse Problems
耦合物理反问题研讨会
- 批准号:
1301825 - 财政年份:2012
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
PASI on Inverse Problems and PDE Control;Valparaiso/Santiago, Chile; January 16-27, 2012
PASI 关于反问题和 PDE 控制;瓦尔帕莱索/圣地亚哥,智利;
- 批准号:
1122928 - 财政年份:2011
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
- 批准号:
2350530 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
$ 4.5万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
$ 4.5万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
$ 4.5万 - 项目类别:
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
- 批准号:
1612015 - 财政年份:2016
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
The nexus of conformal geometry, action principles and tau-functions: a pathway to novel constructive methods for shape analysis and imaging
共形几何、作用原理和 tau 函数的联系:形状分析和成像新颖构建方法的途径
- 批准号:
EP/K019430/1 - 财政年份:2013
- 资助金额:
$ 4.5万 - 项目类别:
Fellowship
Study of Conformal Geometry from the Viewpoint of Topology and Analysis
从拓扑与分析的角度研究共形几何
- 批准号:
18540098 - 财政年份:2007
- 资助金额:
$ 4.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Conformal Geometry Applied to Shape Analysis and Geometric Modeling
职业:共形几何应用于形状分析和几何建模
- 批准号:
0448399 - 财政年份:2005
- 资助金额:
$ 4.5万 - 项目类别:
Continuing Grant
Study of Conformal Geometry and Group C^*-bundle from the Viewpoint of Global Analysis
全局分析视角下的共形几何与C^*-丛研究
- 批准号:
16540059 - 财政年份:2004
- 资助金额:
$ 4.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Geometry and Analysis of Conformal Manifolds and Bubbling Trees
共形流形和冒泡树的几何与分析研究
- 批准号:
14540072 - 财政年份:2002
- 资助金额:
$ 4.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)