Collaborative Research: CNS Core: Medium: Foundations and Scalable Algorithms for Personalized and Collaborative Virtual Reality Over Wireless Networks

协作研究:CNS 核心:中:无线网络上个性化和协作虚拟现实的基础和可扩展算法

基本信息

  • 批准号:
    2106679
  • 负责人:
  • 金额:
    $ 26.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Virtual reality (VR) over wireless networks can provide an interactive and immersive experience for multiple users simultaneously and thus has many applications, especially in VR-based education/training. However, satisfactory personalized user experience in such wireless immersive services demands stringent performance requirements, including: (1) high-speed and high-resolution panoramic image rendering; (2) extremely low delay guarantees; and (3) seamless user experience. Besides the aforementioned requirements, collaborative user experience requires both scalability and fairness of VR service. Existing VR systems heavily rely on various heuristic designs and do not efficiently exploit VR content commonality and its predictability, which impede their large-scale deployment. This project aims to develop the theoretical foundations and complete implementation of a system for providing both personalized and scalable collaborative VR experience over wireless networks. This project will integrate machine learning, wireless networking, and mobile computing to enable high-quality and scalable wireless immersive applications on commodity mobile devices. The theory and practical implementations to be developed in this project will be integrated into both undergraduate and graduate curriculum, as well as exposing K-12 students to state-of-the-art wireless and VR technologies.The proposed designs are motivated by a number of insights that we have developed from our preliminary work, including (1) viewport-adaptive rendering; (2) commonality among VR content for multiple users to enable multicasting; and (3) predictability of VR content to enable prefetching. The proposed research will contribute to and advance both theoretical and system-oriented research in the fields of wireless networks and virtual reality. The project explicitly exploits the unique characteristics of both immersive VR applications and wireless networks, and propose the following four interdependent research thrusts: (I) Dealing with network and prediction uncertainties: This thrust will investigate algorithm designs to optimize personalized user experience given both network and viewport prediction uncertainties. (II) Meeting stringent immersive service requirements: This thrust will develop wireless scheduling algorithms that provide stringent immersive, personalized service guarantees for multiple VR users. (III) Supporting smooth collaborative interaction: This thrust will focus on the algorithm design that leverages the VR content similarities and predictabilities that naturally emerge during collaborative interactions. (IV) Scalable system integration, implementation, evaluation, and deployment: This thrust will integrate Research Thrusts I through III into a holistic system, perform system-level optimizations, and evaluate it through lab experiments and real-world classroom deployment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于无线网络的虚拟现实(VR)可以同时为多个用户提供交互和身临其境的体验,因此在基于VR的教育/培训中有着广泛的应用。然而,在这种无线沉浸式服务中,令人满意的个性化用户体验需要严格的性能要求,包括:(1)高速和高分辨率全景图像渲染;(2)极低的延迟保证;(3)无缝用户体验。除了上述要求外,协同用户体验还要求VR服务的可扩展性和公平性。现有的VR系统严重依赖于各种启发式设计,没有有效地利用VR内容的通用性和可预测性,这阻碍了它们的大规模部署。该项目旨在开发一个在无线网络上提供个性化和可扩展的协作VR体验的系统的理论基础和完整的实现。该项目将集成机器学习、无线网络和移动计算,以在商用移动设备上实现高质量和可扩展的无线沉浸式应用程序。该项目将开发的理论和实践实施将被整合到本科和研究生课程中,并向K-12学生展示最先进的无线和VR技术。建议的设计是基于我们从初步工作中获得的一些见解,包括(1)视点自适应渲染;(2)多用户VR内容的共性以实现多播;以及(3)VR内容的可预测性以实现预取。所提出的研究将有助于和推动无线网络和虚拟现实领域的理论和面向系统的研究。该项目明确利用了沉浸式VR应用和无线网络的独特特性,并提出了以下四个相互依赖的研究主题:(I)处理网络和预测不确定性:此主题将研究在网络和视点预测不确定性的情况下优化个性化用户体验的算法设计。(Ii)满足严格的身临其境服务要求:这一推动力将开发无线调度算法,为多个VR用户提供严格的身临其境、个性化的服务保证。(Iii)支持顺畅的协作互动:这一重点将集中在算法设计上,该算法利用了协作互动过程中自然出现的VR内容的相似性和可预测性。(Iv)可扩展的系统集成、实施、评估和部署:这一努力将把研究推进I到III整合到一个整体系统中,执行系统级优化,并通过实验室实验和真实世界的课堂部署对其进行评估。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Distributed MAC for Dynamic Demands: Congestion and Age Based Designs
  • DOI:
    10.1109/tnet.2022.3191607
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xujin Zhou;Irem Koprulu;A. Eryilmaz;M. Neely
  • 通讯作者:
    Xujin Zhou;Irem Koprulu;A. Eryilmaz;M. Neely
A Lyapunov-Based Methodology for Constrained Optimization with Bandit Feedback
  • DOI:
    10.1609/aaai.v36i4.20285
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Semih Cayci;Yilin Zheng;A. Eryilmaz
  • 通讯作者:
    Semih Cayci;Yilin Zheng;A. Eryilmaz
Fresh Caching of Dynamic Content Over the Wireless Edge
  • DOI:
    10.1109/tnet.2022.3170245
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Abolhassani;John Tadrous;A. Eryilmaz;E. Yeh
  • 通讯作者:
    B. Abolhassani;John Tadrous;A. Eryilmaz;E. Yeh
Communication-efficient Subspace Methods for High-dimensional Federated Learning
Regret-Optimal Learning for Minimizing Edge Caching Service Costs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Atilla Eryilmaz其他文献

Atilla Eryilmaz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Atilla Eryilmaz', 18)}}的其他基金

SpecEES: Collaborative Research: Leveraging Randomization and Human Behavior for Efficient Large-Scale Distributed Spectrum Access
SpecEES:协作研究:利用随机化和人类行为实现高效的大规模分布式频谱访问
  • 批准号:
    1824337
  • 财政年份:
    2018
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Fast Online Machine Learning Algorithms for Wireless Networks
NeTS:小型:协作研究:无线网络的快速在线机器学习算法
  • 批准号:
    1717045
  • 财政年份:
    2017
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Performance Analysis and Design of Systems with Interconnected Resources
协作研究:资源互联系统的性能分析与设计
  • 批准号:
    1562065
  • 财政年份:
    2016
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: Joint Network and Market Design for Content and Spectrum Sharing in Future 5G Networks (JoiNtMaCS)
WiFiUS:协作研究:未来 5G 网络内容和频谱共享的联合网络和市场设计 (JoiNtMaCS)
  • 批准号:
    1456806
  • 财政年份:
    2015
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
EARS: Collaborative Research: Mobile Millimeter-Wave Networking: Distributed Cognition and Coordination Algorithms using Novel On-Chip Phased-Arrays
EARS:协作研究:移动毫米波网络:使用新型片上相控阵的分布式认知和协调算法
  • 批准号:
    1444026
  • 财政年份:
    2014
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
CAREER: Theoretical Foundations for Wireless Network Algorithm Design: Satisfying Short-Term and Long-Term Application Requirements
职业:无线网络算法设计的理论基础:满足短期和长期应用需求
  • 批准号:
    0953515
  • 财政年份:
    2010
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了