CAREER: Theoretical Foundations for Wireless Network Algorithm Design: Satisfying Short-Term and Long-Term Application Requirements

职业:无线网络算法设计的理论基础:满足短期和长期应用需求

基本信息

项目摘要

Multi-hop wireless networks that are envisioned to form the backbone of many future communication systems are: typically subject to restrictive and unpredictably changing resource constraints; required to operate using low complexity and scalable operations; envisioned to serve essential applications with a range of long-term (e.g. throughput-greedy, long-duration applications) to short-term (e.g. delay-sensitive, short-duration applications) requirements. Yet, there is a huge gap in our understanding of how to design wireless network controllers operating under such harsh conditions that can efficiently serve diverse applications, especially those that have various degrees of delay sensitivities.This research fills this gap by developing a rigorous theoretical foundation for the methodical design of communication strategies for effectively supporting diverse applications in general multi-hop wireless networks. To that end, it first reveals the significant impact of several unexplored design choices, including the service discipline, traffic shaping strategy, and delay-aware decision making, on the achieved application performances. Then, it systematically exploits these new design dimensions for optimally serving both delay-related short-term and throughput-related long-term application requirements by developing new approaches and mathematical tools within non-convex optimization, stochastic network control, and randomized/approximate algorithms. The insights and mathematical tools developed within this project are expected to play an instrumental role in the design of efficient communication protocols for tomorrow's networks serving vital services with a range of delay sensitivities and throughput requirements (in health-care, rescue operations, security, automated control, etc.). The society will also benefit from the educational aspects of the project in the training of future engineers and researchers.
被设想为形成许多未来通信系统的骨干的多跳无线网络:通常受到限制性的和不可预测地改变的资源约束;需要使用低复杂度和可扩展的操作来操作;设想为基本应用提供一系列长期(例如,吞吐量贪婪的、长持续时间的应用)到短期(例如,延迟敏感的、短持续时间的应用)要求。然而,有一个巨大的差距,在我们的理解如何设计无线网络控制器在这样恶劣的条件下,可以有效地服务于不同的应用程序,特别是那些有不同程度的延迟sensitivity.This研究填补了这一空白,通过开发一个严格的理论基础,有条不紊地设计通信策略,有效地支持一般多跳无线网络中的不同应用程序。为此,它首先揭示了几个未探索的设计选择,包括服务纪律,流量塑造策略,延迟意识的决策,实现应用性能的显着影响。然后,它系统地利用这些新的设计维度,通过在非凸优化,随机网络控制和随机/近似算法中开发新的方法和数学工具,优化服务于延迟相关的短期和吞吐量相关的长期应用需求。该项目中开发的见解和数学工具预计将在为明天的网络设计高效的通信协议方面发挥重要作用,这些网络服务于具有一系列延迟敏感性和吞吐量要求的重要服务(医疗保健,救援行动,安全,自动控制等)。该协会还将受益于该项目在培训未来工程师和研究人员方面的教育方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Atilla Eryilmaz其他文献

Atilla Eryilmaz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Atilla Eryilmaz', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Foundations and Scalable Algorithms for Personalized and Collaborative Virtual Reality Over Wireless Networks
协作研究:CNS 核心:中:无线网络上个性化和协作虚拟现实的基础和可扩展算法
  • 批准号:
    2106679
  • 财政年份:
    2021
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
SpecEES: Collaborative Research: Leveraging Randomization and Human Behavior for Efficient Large-Scale Distributed Spectrum Access
SpecEES:协作研究:利用随机化和人类行为实现高效的大规模分布式频谱访问
  • 批准号:
    1824337
  • 财政年份:
    2018
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Fast Online Machine Learning Algorithms for Wireless Networks
NeTS:小型:协作研究:无线网络的快速在线机器学习算法
  • 批准号:
    1717045
  • 财政年份:
    2017
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Standard Grant
Collaborative Research: Performance Analysis and Design of Systems with Interconnected Resources
协作研究:资源互联系统的性能分析与设计
  • 批准号:
    1562065
  • 财政年份:
    2016
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: Joint Network and Market Design for Content and Spectrum Sharing in Future 5G Networks (JoiNtMaCS)
WiFiUS:协作研究:未来 5G 网络内容和频谱共享的联合网络和市场设计 (JoiNtMaCS)
  • 批准号:
    1456806
  • 财政年份:
    2015
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Standard Grant
EARS: Collaborative Research: Mobile Millimeter-Wave Networking: Distributed Cognition and Coordination Algorithms using Novel On-Chip Phased-Arrays
EARS:协作研究:移动毫米波网络:使用新型片上相控阵的分布式认知和协调算法
  • 批准号:
    1444026
  • 财政年份:
    2014
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
  • 批准号:
    2339904
  • 财政年份:
    2024
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Foundations for Learning Network Dynamics
职业:学习网络动力学的理论基础
  • 批准号:
    2338855
  • 财政年份:
    2024
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
  • 批准号:
    2340482
  • 财政年份:
    2024
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
  • 批准号:
    2347760
  • 财政年份:
    2023
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Foundations of Modern Machine Learning Paradigms: Generative and Out-of-Distribution
职业:现代机器学习范式的理论基础:生成式和非分布式
  • 批准号:
    2238523
  • 财政年份:
    2023
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Foundations of Offline Reinforcement Learning
职业:离线强化学习的理论基础
  • 批准号:
    2141781
  • 财政年份:
    2022
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
CAREER: Towards theoretical foundations of neural network based representation learning
职业:迈向基于神经网络的表示学习的理论基础
  • 批准号:
    2145703
  • 财政年份:
    2022
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Foundations for Probabilistic Models with Dense Random Matrices
职业:密集随机矩阵概率模型的理论基础
  • 批准号:
    1750362
  • 财政年份:
    2018
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
  • 批准号:
    1752614
  • 财政年份:
    2018
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical foundations of neural networks - representation, optimization, and generalization
职业:神经网络的理论基础——表示、优化和泛化
  • 批准号:
    1750051
  • 财政年份:
    2018
  • 资助金额:
    $ 46.27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了