Collaborative Research: Performance Analysis and Design of Systems with Interconnected Resources

协作研究:资源互联系统的性能分析与设计

基本信息

  • 批准号:
    1562065
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Many information processing, service and manufacturing systems can be viewed as networks of interacting resources. Examples include data centers for cloud computing, online advertising systems, electronic chip manufacturing lines, the Internet, and health care service systems. Requests for services from such systems are processed by an interconnected set of resources such as computers, manufacturing stations, and human servers. In such applications, a common objective is to identify service policies (routing, service order, and server control algorithms) that minimize delays for customers using the system. Except in a few special cases, currently there are no mathematical tools available to compute performance metrics such as the delay experienced by the customers, especially when the system size is large. The goal of this project is to advance the mathematics tools needed to compute performance metrics of large systems of networked resources. These mathematical techniques will enable the design of good service policies for the myriad of applications mentioned earlier. The results from the project will be incorporated into courses. Outreach efforts will be made to include students from underrepresented groups and minorities in the project. Often the problem of optimal control of networks of interacting resources can be modeled as a Markov Decision Problem (MDP), but the state-space is prohibitively large to obtain optimal solutions. Therefore, it is common to study such problems (under some appropriate scaling) either as fluid control problems, or Brownian control problems, or large-deviations problems. The objective of this project is to enable an alternative approach, which involves studying the drift of appropriately-chosen Lyapunov functions, in transient and steady-state modes. The specific challenge involves developing lower-dimensional models for high-dimensional systems, and using the lower-dimensional models to study the optimality, or lack thereof, of specific architectures and algorithms. If successful, this project will result in (i) new analysis tools based on the drift-based arguments, which provide tight bounds on the steady-state performance of control and decision algorithms in large networks, and (ii) design of optimal or near-optimal algorithms that perform well at all traffic loads.
许多信息处理、服务和制造系统可以被视为相互作用的资源网络。例如,云计算数据中心、在线广告系统、电子芯片生产线、互联网和医疗保健服务系统。来自这样的系统的服务请求由诸如计算机、制造站和人工服务器的一组互连的资源来处理。在这类应用中,一个共同的目标是确定服务策略(路由、服务顺序和服务器控制算法),以最大限度地减少客户使用系统的延迟。除了少数特殊情况外,目前还没有可用的数学工具来计算客户经历的延迟等性能指标,特别是当系统规模较大时。该项目的目标是改进计算大型网络资源系统的性能指标所需的数学工具。这些数学技术将支持为前面提到的无数应用程序设计良好的服务策略。该项目的成果将被纳入课程。将作出外联努力,将代表人数不足的群体和少数群体的学生纳入该项目。通常,相互作用的资源网络的最优控制问题可以建模为马尔可夫决策问题(MDP),但状态空间太大,无法获得最优解。因此,通常将这类问题(在适当的尺度下)作为流体控制问题、布朗控制问题或大偏差问题来研究。这个项目的目标是实现另一种方法,包括研究适当选择的Lyapunov函数在暂态和稳态模式下的漂移。具体的挑战涉及为高维系统开发低维模型,并使用低维模型来研究特定体系结构和算法的最优性或缺乏最优性。如果成功,这个项目将导致(I)基于漂移参数的新分析工具,它为大型网络中控制和决策算法的稳态性能提供了严格的界限,以及(Ii)设计出在所有流量负载下性能良好的最优或接近最优的算法。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proactive Caching for Low Access-Delay Services under Uncertain Predictions
Action-Based Scheduling: Leveraging App Interactivity for Scheduler Efficiency
  • DOI:
    10.1109/tnet.2018.2882557
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Tadrous;A. Eryilmaz;A. Sabharwal
  • 通讯作者:
    John Tadrous;A. Eryilmaz;A. Sabharwal
Learning to Control Renewal Processes with Bandit Feedback
A new flexible multi-flow LRU cache management paradigm for minimizing misses
一种新的灵活的多流 LRU 缓存管理范例,可最大限度地减少丢失
Optimal Learning for Dynamic Coding in Deadline-Constrained Multi-Channel Networks
时限受限的多通道网络中动态编码的最优学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Atilla Eryilmaz其他文献

Atilla Eryilmaz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Atilla Eryilmaz', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Foundations and Scalable Algorithms for Personalized and Collaborative Virtual Reality Over Wireless Networks
协作研究:CNS 核心:中:无线网络上个性化和协作虚拟现实的基础和可扩展算法
  • 批准号:
    2106679
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
SpecEES: Collaborative Research: Leveraging Randomization and Human Behavior for Efficient Large-Scale Distributed Spectrum Access
SpecEES:协作研究:利用随机化和人类行为实现高效的大规模分布式频谱访问
  • 批准号:
    1824337
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Fast Online Machine Learning Algorithms for Wireless Networks
NeTS:小型:协作研究:无线网络的快速在线机器学习算法
  • 批准号:
    1717045
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: Joint Network and Market Design for Content and Spectrum Sharing in Future 5G Networks (JoiNtMaCS)
WiFiUS:协作研究:未来 5G 网络内容和频谱共享的联合网络和市场设计 (JoiNtMaCS)
  • 批准号:
    1456806
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EARS: Collaborative Research: Mobile Millimeter-Wave Networking: Distributed Cognition and Coordination Algorithms using Novel On-Chip Phased-Arrays
EARS:协作研究:移动毫米波网络:使用新型片上相控阵的分布式认知和协调算法
  • 批准号:
    1444026
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Theoretical Foundations for Wireless Network Algorithm Design: Satisfying Short-Term and Long-Term Application Requirements
职业:无线网络算法设计的理论基础:满足短期和长期应用需求
  • 批准号:
    0953515
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
  • 批准号:
    2403399
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
  • 批准号:
    2420369
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了