Collaborative Research: SHF: Medium: Ensuring Safety and Liveness of Modern Systems through Dynamic Temporal Analysis
合作研究:SHF:Medium:通过动态时间分析确保现代系统的安全性和活力
基本信息
- 批准号:2107035
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reactive/interactive systems such as web applications and servers, real-time video streaming software, and IoT platforms are deeply embedded into all aspects of the modern world. Many program-analysis techniques and tools have been created to analyze important temporal properties of these systems that span both safety ("nothing bad will happen") and liveness ("something good eventually happens"). Unfortunately, modern static analyses are still limited in handling complex program semantics that often appear in many real-world applications: they support only simple properties, produce false positives, or do not scale to large programs. Recent dynamic or "data-driven" approaches address several shortcomings of static analyses to analyze more complex program properties more efficiently, yet sometimes yield incorrect results. The project's novelties are the theoretical and practical integration of static and dynamic approaches to analyze, localize, and repair temporal aspects of reactive/interactive systems. The project's impacts are the development of new theories and algorithms, giving rise to advanced methods for ensuring the safety/liveness of today's reactive/interactive software.Today's software involves complex non-linear behavior, heap manipulations, and higher-order features. The project's use of dynamic analysis enables inference of expressive properties of these programs, while the use of static verification allows for validation of those inferred properties. Furthermore, static verification and dynamic learning mutually inform and bolster the power of each other, allowing for safety/liveness analyses, and even for the localization of faults and synthesis of repairs for temporal defects. The methods being developed are embodied in a growing collection of automated tools to be released publicly. The results of the research are used to develop new courses, senior design projects, and an interactive Jupyter book in programming languages and software engineering. The project broadens participation through several initiatives, aimed at middle/high school students and undergraduate students from underrepresented groups in the investigators' local communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Web应用程序和服务器、实时视频流软件和物联网平台等反应式/交互式系统深深嵌入到现代世界的各个方面。许多程序分析技术和工具已经被创建来分析这些系统的重要时间属性,这些属性涵盖了安全性(“不会发生任何坏事”)和活跃性(“最终会发生一些好事”)。不幸的是,现代静态分析在处理复杂的程序语义方面仍然受到限制,这些语义经常出现在许多现实世界的应用程序中:它们只支持简单的属性,产生误报,或者不能扩展到大型程序。最近的动态或“数据驱动”的方法解决了静态分析的几个缺点,以更有效地分析更复杂的程序属性,但有时会产生不正确的结果。该项目的新颖之处是静态和动态方法的理论和实践整合,以分析,本地化和修复反应/交互系统的时间方面。该项目的影响是新的理论和算法的发展,从而产生了先进的方法,以确保今天的反应/交互式软件的安全性/活性。今天的软件涉及复杂的非线性行为,堆操作和高阶特征。该项目的动态分析的使用,使这些程序的表达属性的推断,而静态验证的使用允许验证这些推断的属性。此外,静态验证和动态学习相互通知和支持彼此的力量,允许安全/活性分析,甚至用于故障的定位和临时缺陷的修复的合成。正在开发的方法体现在越来越多的公开发布的自动化工具中。研究结果用于开发新课程,高级设计项目,以及编程语言和软件工程的交互式电子书。该项目通过多项举措扩大了参与范围,目标群体是研究者所在社区中代表性不足的初中/高中学生和本科生。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ThanhVu Nguyen其他文献
GenProg: A Generic Method for Automatic Software Repair
- DOI:
10.1109/tse.2011.104 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:7.4
- 作者:
Le Goues, Claire;ThanhVu Nguyen;Weimer, Westley - 通讯作者:
Weimer, Westley
Parallel shared memory strategies for ant-based optimization algorithms
基于蚂蚁优化算法的并行共享内存策略
- DOI:
10.1145/1569901.1569903 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
T. N. Bui;ThanhVu Nguyen;Joseph R. Rizzo - 通讯作者:
Joseph R. Rizzo
ThanhVu Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ThanhVu Nguyen', 18)}}的其他基金
CAREER: NeuralSAT: A Constraint-Solving Framework for Verifying Deep Neural Networks
职业:NeuralSAT:用于验证深度神经网络的约束求解框架
- 批准号:
2238133 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
FMitF: Track II: Cybolic: a symbolic execution technique and tool for analyzing CMake build scripts
FMITF:轨道 II:Cybolic:用于分析 CMake 构建脚本的符号执行技术和工具
- 批准号:
2319131 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CRII: SHF: Analyzing the Linux's KBuild Makefile
CRII:SHF:分析 Linux 的 KBuild Makefile
- 批准号:
2304748 - 财政年份:2022
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Ensuring Safety and Liveness of Modern Systems through Dynamic Temporal Analysis
合作研究:SHF:Medium:通过动态时间分析确保现代系统的安全性和活力
- 批准号:
2200621 - 财政年份:2021
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
CRII: SHF: Analyzing the Linux's KBuild Makefile
CRII:SHF:分析 Linux 的 KBuild Makefile
- 批准号:
1948536 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant