Collaborative Research: AF: Medium: Algorithmic High-Dimensional Robust Statistics
合作研究:AF:中:算法高维稳健统计
基本信息
- 批准号:2107079
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The broad task of making accurate inferences from high-dimensional and contaminated datasets is of fundamental importance and has become a key challenge in a number of pressing data-analysis applications. These include (1) data-poisoning attacks in machine learning (ML), where even a small fraction of adversarial data inserted by malicious users can substantially degrade the quality of the ML system, and (2) exploratory analysis of scientific datasets (e.g., in biology), where systematic errors can create structured corruptions that require painstaking effort to detect. To address these challenges, there is a real need to develop efficient robust learning algorithms -- methods whose performance is stable to deviations from the idealized assumptions about the input data. The precise form of these deviations is problem-specific and gives rise to various notions of robustness. The overarching goal of this project is to develop a general algorithmic theory of high-dimensional robust statistics and learning. A crucial component of the project involves building bridges between different communities, by organizing interdisciplinary workshops, and writing a new graduate textbook on the topic. Moreover, the investigators are mentoring undergraduate students and design new data-centric courses integrating research and teaching.The technical core of this project consists of two interrelated thrusts: (1) List-Decodable Learning and Mixture Models: The majority of recent literature in algorithmic high-dimensional robust learning focuses on the setting where the clean data is the majority of the dataset. List-decodable learning is a relaxed notion of learning capturing the regime where the clean data is a minority of the input dataset, and can be used to model important data-science applications, such as crowdsourcing with a majority of unreliable respondents and learning-mixture models. The project is developing a unified theory with the goal of uncovering which distributional parameters can be efficiently list-decoded, and leveraging this theory to understand the complexity of learning mixture models. (2) Robust Supervised Learning of Geometric Concepts: The goal of supervised learning is to infer a function from a collection of labeled observations. Supervised learning has traditionally been concerned with the problem of generalizing from a set of correctly labeled examples. In many realistic scenarios, a fraction of the points and/or labels may be corrupted by noise, e.g., due to sensor errors or adversarial data poisoning. Hence, it is important to develop efficient algorithms that produce accurate predictors under these conditions. The project is developing efficient robust learning algorithms for rich families of geometric concepts with respect to natural and well-studied semi-random noise models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从高维和污染数据集进行准确推断的广泛任务具有根本的重要性,并且已经成为许多紧迫的数据分析应用中的关键挑战。这些包括(1)机器学习(ML)中的数据中毒攻击,其中即使是恶意用户插入的一小部分对抗性数据也会大大降低ML系统的质量,以及(2)科学数据集的探索性分析(例如,在生物学中),系统性错误会造成结构性腐败,需要付出艰苦的努力才能发现。为了应对这些挑战,有一个真实的需要开发有效的鲁棒学习算法-方法的性能是稳定的偏离理想化的假设输入数据。这些偏差的精确形式是特定于问题的,并产生了各种鲁棒性概念。该项目的总体目标是开发高维鲁棒统计和学习的通用算法理论。该项目的一个重要组成部分是通过组织跨学科讲习班在不同社区之间建立桥梁,并编写一本关于这一主题的新的研究生教科书。该项目的技术核心由两个相互关联的主题组成:(1)列表解码学习和混合模型:最近的大多数算法高维鲁棒学习的文献都集中在干净数据是数据集的大部分的设置。列表可解码学习是一种宽松的学习概念,它捕获了干净数据是输入数据集的少数的情况,并且可以用于建模重要的数据科学应用,例如大多数不可靠的受访者和学习混合模型的众包。 该项目正在开发一种统一的理论,其目标是揭示哪些分布参数可以有效地进行列表解码,并利用该理论来理解学习混合模型的复杂性。(2)几何概念的鲁棒监督学习:监督学习的目标是从标记的观察集合中推断函数。传统上,监督学习关注的是从一组正确标记的示例中泛化的问题。在许多现实场景中,一部分点和/或标签可能被噪声破坏,例如,由于传感器错误或对抗性数据中毒。因此,重要的是开发有效的算法,在这些条件下产生准确的预测。该项目正在为自然和经过充分研究的半随机噪声模型的丰富几何概念家族开发高效的鲁棒学习算法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cryptographic Hardness of Learning Halfspaces with Massart Noise
使用 Massart 噪声学习半空间的密码学硬度
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Diakonikolas, I;Kane, D;Manurangsi, P;Ren, L.
- 通讯作者:Ren, L.
Forster Decomposition and Learning Halfspaces with Noise
- DOI:
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Ilias Diakonikolas;D. Kane;Christos Tzamos
- 通讯作者:Ilias Diakonikolas;D. Kane;Christos Tzamos
Learning a Single Neuron with Adversarial Label Noise via Gradient Descent
- DOI:10.48550/arxiv.2206.08918
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ilias Diakonikolas;Vasilis Kontonis;Christos Tzamos;Nikos Zarifis
- 通讯作者:Ilias Diakonikolas;Vasilis Kontonis;Christos Tzamos;Nikos Zarifis
A Strongly Polynomial Algorithm for Approximate Forster Transforms and Its Application to Halfspace Learning
一种近似福斯特变换的强多项式算法及其在半空间学习中的应用
- DOI:10.1145/3564246.3585191
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Diakonikolas, Ilias;Tzamos, Christos;Kane, Daniel M.
- 通讯作者:Kane, Daniel M.
Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models
- DOI:10.48550/arxiv.2206.04589
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ilias Diakonikolas;D. Kane;Yuxin Sun
- 通讯作者:Ilias Diakonikolas;D. Kane;Yuxin Sun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilias Diakonikolas其他文献
A Regularity Lemma, and Low-Weight Approximators, for Low-Degree Polynomial Threshold Functions
低次多项式阈值函数的正则引理和低权重近似器
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;R. Servedio;Li;Andrew Wan - 通讯作者:
Andrew Wan
Online Learning of Halfspaces with Massart Noise
使用 Massart 噪声在线学习半空间
- DOI:
10.48550/arxiv.2405.12958 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;Vasilis Kontonis;Christos Tzamos;Nikos Zarifis - 通讯作者:
Nikos Zarifis
The Sample Complexity of Robust Covariance Testing
鲁棒协方差检验的样本复杂性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;Daniel M. Kane - 通讯作者:
Daniel M. Kane
Near-Optimal Closeness Testing of Discrete Histogram Distributions
离散直方图分布的近最优紧密度测试
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;D. Kane;Vladimir Nikishkin - 通讯作者:
Vladimir Nikishkin
Super Non-singular Decompositions of Polynomials and Their Application to Robustly Learning Low-Degree PTFs
多项式的超非奇异分解及其在鲁棒学习低次 PTF 中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;Daniel Kane;Vasilis Kontonis;Sihan Liu;Nikos Zarifis - 通讯作者:
Nikos Zarifis
Ilias Diakonikolas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilias Diakonikolas', 18)}}的其他基金
CAREER: Learning Algorithms with Robustness and Efficiency Guarantees
职业:学习具有鲁棒性和效率保证的算法
- 批准号:
2144298 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
2006206 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Learning and Testing Structured Probabilistic Models
职业:学习和测试结构化概率模型的有效算法
- 批准号:
2011255 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Efficient Algorithms for Learning and Testing Structured Probabilistic Models
职业:学习和测试结构化概率模型的有效算法
- 批准号:
1652862 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1733796 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Sublinear Algorithms for Approximating Probability Distributions
用于近似概率分布的次线性算法
- 批准号:
EP/L021749/1 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Research Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant