CAREER: Efficient Algorithms for Learning and Testing Structured Probabilistic Models
职业:学习和测试结构化概率模型的有效算法
基本信息
- 批准号:1652862
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, the amount of available data in science and technology has exploded and is currently expanding at an unprecedented rate. The general task of making accurate inferences on large and complex datasets has become a major bottleneck across various disciplines. A natural formalization of such inference tasks involves viewing the data as random samples drawn from a probabilistic model -- a model that we believe describes the process generating the data. The overarching goal of this project is to obtain a refined understanding of these inference tasks from both statistical and computational perspectives. The questions addressed in this project arise from pressing challenges faced in modern data analysis. A crucial component of the project involves fostering collaboration between different communities. Furthermore, the PI will mentor high-school and undergraduate students, and design several new theory courses integrating research and teaching at the undergraduate and graduate levels.The PI will investigate several fundamental algorithmic questions in unsupervised learning and testing for which there is an alarming gap in our current understanding. These include designing efficient algorithms that are stable in the presence of deviations from the assumed model, circumventing the curse of dimensionality in distribution learning, and testing high-dimensional probabilistic models. This set of directions could lead to new algorithmic and probabilistic techniques, and offer insights into the interplay between structure and efficiency in unsupervised estimation. This research ties into a broader range of work across computer science, probability, statistics, and information theory.
近年来,科学和技术领域的可用数据量呈爆炸式增长,目前正以前所未有的速度扩大。在大型复杂数据集上进行准确推理的一般任务已成为各个学科的主要瓶颈。这种推理任务的自然形式化涉及将数据视为从概率模型中提取的随机样本-我们认为该模型描述了生成数据的过程。这个项目的首要目标是从统计和计算的角度来获得这些推理任务的精确理解。在这个项目中解决的问题来自现代数据分析所面临的紧迫挑战。该项目的一个关键组成部分是促进不同社区之间的合作。此外,PI将指导高中和本科生,并设计几个新的理论课程,将研究和教学结合在一起,在本科和研究生阶段。PI将研究无监督学习和测试中的几个基本算法问题,我们目前的理解存在惊人的差距。这些包括设计有效的算法,在存在偏离假设模型的情况下保持稳定,规避分布学习中的维数灾难,以及测试高维概率模型。这组方向可能导致新的算法和概率技术,并提供深入了解无监督估计中结构和效率之间的相互作用。这项研究与计算机科学、概率论、统计学和信息论等更广泛的工作联系在一起。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Outlier-Robust Learning of Ising Models Under Dobrushin’s Condition
Dobrushin 条件下 Ising 模型的离群稳健学习
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ilias Diakonikolas;Daniel M. Kane;Alistair Stewart;Yuxin Sun
- 通讯作者:Yuxin Sun
Robustly learning mixtures of k arbitrary Gaussians
鲁棒地学习 k 个任意高斯的混合
- DOI:10.1145/3519935.3519953
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bakshi, Ainesh;Diakonikolas, Ilias;Jia, He;Kane, Daniel M.;Kothari, Pravesh K.;Vempala, Santosh S.
- 通讯作者:Vempala, Santosh S.
Testing Shape Restrictions of Discrete Distributions
测试离散分布的形状限制
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Canonne, C.L.
- 通讯作者:Canonne, C.L.
Testing for Families of Distributions via the Fourier Transform
通过傅里叶变换测试分布族
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Canonne, Clement;Diakonikolas, Ilias;Stewart, Alistair
- 通讯作者:Stewart, Alistair
Testing Conditional Independence of Discrete Distributions
- DOI:10.1145/3188745.3188756
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:C. Canonne;Ilias Diakonikolas;D. Kane;Alistair Stewart
- 通讯作者:C. Canonne;Ilias Diakonikolas;D. Kane;Alistair Stewart
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilias Diakonikolas其他文献
A Regularity Lemma, and Low-Weight Approximators, for Low-Degree Polynomial Threshold Functions
低次多项式阈值函数的正则引理和低权重近似器
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;R. Servedio;Li;Andrew Wan - 通讯作者:
Andrew Wan
Online Learning of Halfspaces with Massart Noise
使用 Massart 噪声在线学习半空间
- DOI:
10.48550/arxiv.2405.12958 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;Vasilis Kontonis;Christos Tzamos;Nikos Zarifis - 通讯作者:
Nikos Zarifis
The Sample Complexity of Robust Covariance Testing
鲁棒协方差检验的样本复杂性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;Daniel M. Kane - 通讯作者:
Daniel M. Kane
Near-Optimal Closeness Testing of Discrete Histogram Distributions
离散直方图分布的近最优紧密度测试
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;D. Kane;Vladimir Nikishkin - 通讯作者:
Vladimir Nikishkin
Super Non-singular Decompositions of Polynomials and Their Application to Robustly Learning Low-Degree PTFs
多项式的超非奇异分解及其在鲁棒学习低次 PTF 中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;Daniel Kane;Vasilis Kontonis;Sihan Liu;Nikos Zarifis - 通讯作者:
Nikos Zarifis
Ilias Diakonikolas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilias Diakonikolas', 18)}}的其他基金
CAREER: Learning Algorithms with Robustness and Efficiency Guarantees
职业:学习具有鲁棒性和效率保证的算法
- 批准号:
2144298 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithmic High-Dimensional Robust Statistics
合作研究:AF:中:算法高维稳健统计
- 批准号:
2107079 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
2006206 - 财政年份:2019
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Learning and Testing Structured Probabilistic Models
职业:学习和测试结构化概率模型的有效算法
- 批准号:
2011255 - 财政年份:2019
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1733796 - 财政年份:2017
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Sublinear Algorithms for Approximating Probability Distributions
用于近似概率分布的次线性算法
- 批准号:
EP/L021749/1 - 财政年份:2014
- 资助金额:
$ 54万 - 项目类别:
Research Grant
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
- 批准号:
2337832 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
- 批准号:
2239046 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
CAREER: Efficient Uncertainty Quantification in Turbulent Combustion Simulations: Theory, Algorithms, and Computations
职业:湍流燃烧模拟中的高效不确定性量化:理论、算法和计算
- 批准号:
2143625 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
- 批准号:
2143904 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
CAREER: Genomic Data Science: From Informational Limits to Efficient Algorithms
职业:基因组数据科学:从信息限制到高效算法
- 批准号:
2046991 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
CAREER: Robust and Efficient Algorithms for Statistical Estimation and Inference
职业:用于统计估计和推理的稳健且高效的算法
- 批准号:
2045068 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
CAREER: Efficient Fine-grained Algorithms
职业:高效的细粒度算法
- 批准号:
2223282 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
CAREER: Efficient and Accurate Local Time-Stepping Algorithms for Multiscale Multiphysics Systems
职业:多尺度多物理系统的高效、准确的局部时间步进算法
- 批准号:
2041884 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant