Collaborative Research: RI: Medium: Thermal Computational Imaging

合作研究:RI:媒介:热计算成像

基本信息

  • 批准号:
    2107313
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Image sensors for thermal wavebands of light are usually noisy and subject to nuisance variations. Yet, it is indisputable that thermal imaging has the potential to spur numerous scientific and engineering applications that can fundamentally transform our society. For example, autonomous vehicles equipped with thermal cameras can navigate in the dark and through fog and rain. The widespread availability of thermal imaging technology could usher in methods for non-intrusive vital sign monitoring in public spaces, thereby providing a new tool in our public health arsenal, as well as enable environmental and ecosystem monitoring at both local and global scales. This project seeks to enable such applications with inexpensive but noisy thermal sensors. The research advances made in this progress will be integrated with an educational and outreach program that includes creating new undergraduate and graduate courses, engaging undergraduates in research, and engaging with K-12 communities.The focus of this research is to advance thermal scene understanding by developing foundational tools for rendering, modeling and imaging at thermal wavebands. The project will develop a physically accurate rendering pipeline for thermal wavebands, that incorporates wavelength-dependent thermal emissivity of complex surfaces, thermal propagation in atmosphere, and accurate sensor modeling and noise characterization. This modeling will be used to design and develop novel computational imaging systems that allow capture of multi-dimensional thermal signals, such as multi-spectral and polarization measurements. The research will also develop a differentiable renderer and exploit it within an end-to-end learning framework for inverse graphics. This will allow for significant improvements in problems such as denoising, super-resolution, stereo, object detection and others. The advances in research will be used to explore and advance autonomous navigation, remote health monitoring and remote environmental monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于光的热波段的图像传感器通常是有噪声的并且经受干扰变化。然而,无可争议的是,热成像有可能刺激许多科学和工程应用,从根本上改变我们的社会。例如,配备热成像摄像头的自动驾驶汽车可以在黑暗中导航,并通过雾和雨。热成像技术的广泛应用可以在公共场所引入非侵入性生命体征监测方法,从而为我们的公共卫生武器库提供新的工具,并在地方和全球范围内实现环境和生态系统监测。该项目旨在通过廉价但有噪声的热传感器实现此类应用。在这一进展中取得的研究进展将与教育和推广计划相结合,包括创建新的本科生和研究生课程,让本科生参与研究,并与K-12社区合作。这项研究的重点是通过开发热波段渲染,建模和成像的基础工具来推进热场景理解。该项目将开发一个针对热波段的物理精确渲染管道,其中包含复杂表面的与波长相关的热发射率、大气中的热传播以及精确的传感器建模和噪声表征。这种建模将用于设计和开发新的计算成像系统,允许捕获多维热信号,如多光谱和偏振测量。该研究还将开发一个可区分的渲染器,并在反向图形的端到端学习框架中利用它。这将使去噪、超分辨率、立体声、物体检测等问题得到显著改善。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal Image Processing via Physics-Inspired Deep Networks
WIRE: Wavelet Implicit Neural Representations
  • DOI:
    10.1109/cvpr52729.2023.01775
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vishwanath Saragadam;Daniel LeJeune;Jasper Tan;Guha Balakrishnan;A. Veeraraghavan;Richard Baraniuk
  • 通讯作者:
    Vishwanath Saragadam;Daniel LeJeune;Jasper Tan;Guha Balakrishnan;A. Veeraraghavan;Richard Baraniuk
Thermal Spread Functions (TSF): Physics-Guided Material Classification
  • DOI:
    10.1109/cvpr52729.2023.00164
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aniket Dashpute;Vishwanath Saragadam;Emma Alexander;F. Willomitzer;A. Katsaggelos;A. Veeraraghavan;O. Cossairt
  • 通讯作者:
    Aniket Dashpute;Vishwanath Saragadam;Emma Alexander;F. Willomitzer;A. Katsaggelos;A. Veeraraghavan;O. Cossairt
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashok Veeraraghavan其他文献

PPGMotion: Model-based detection of motion artifacts in photoplethysmography signals
PPGMotion:基于模型的光电容积描记术信号中运动伪影的检测
  • DOI:
    10.1016/j.bspc.2022.103632
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Akash Kumar Maity;Ashok Veeraraghavan;Ashutosh Sabharwal
  • 通讯作者:
    Ashutosh Sabharwal
Generalization Error
泛化错误
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramalingam Chellappa;Ashok Veeraraghavan;Narayanan Ramanathan;Chew;M. S. Nixon;A. Elgammal;Jeffrey E. Boyd;J. Little;Niels Lynnerup;Peter K. Larsen;Douglas A. Reynolds
  • 通讯作者:
    Douglas A. Reynolds
Neural Wavefront Shaping in the Photon-Starved Regime
光子匮乏状态下的神经波前整形
Unsupervised view and rate invariant clustering of video sequences q
视频序列 q 的无监督视图和速率不变聚类
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Turaga;Ashok Veeraraghavan;Rama Chellappa
  • 通讯作者:
    Rama Chellappa
Ieee Transactions on Pattern Analysis and Machine Intelligence Shape and Behavior Encoded Tracking of Bee Dances Ieee Transactions on Pattern Analysis and Machine Intelligence 2
IEEE 模式分析和机器智能交易 蜜蜂舞蹈的形状和行为编码跟踪 IEEE 模式分析和机器智能交易 2
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashok Veeraraghavan;Ramalingam Chellappa
  • 通讯作者:
    Ramalingam Chellappa

Ashok Veeraraghavan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashok Veeraraghavan', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: OneDegree: Foundations and Methods for Imaging in mmWave Wireless Networks
合作研究:CNS 核心:Medium:OneDegree:毫米波无线网络成像的基础和方法
  • 批准号:
    1956297
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Collaborative: Presentation-attack-robust biometrics systems via computational imaging of physiology and materials
SaTC:核心:中:协作:通过生理学和材料的计算成像实现演示攻击鲁棒生物识别系统
  • 批准号:
    1801372
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: A Signal Processing Framework for Computational Imaging: From Theory to Applications
职业:计算成像信号处理框架:从理论到应用
  • 批准号:
    1652633
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
EAGER: Fabrication of Thin, Lens-Free Cameras for Visible and SWIR Imaging
EAGER:制造用于可见光和短波红外成像的薄型无镜头相机
  • 批准号:
    1502875
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
I-Corps: TEAMS-MobileVision from Advanced Vision Labs
I-Corps:来自高级视觉实验室的 TEAMS-MobileVision
  • 批准号:
    1505693
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CIF: Small: Computational Tools for Visual Inference of Complex Materials
CIF:小型:复杂材料视觉推理的计算工具
  • 批准号:
    1117939
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CGV: Small: Collaborative Research: AdaCID: Adaptive Coded Imaging and Displays
CGV:小型:协作研究:AdaCID:自适应编码成像和显示
  • 批准号:
    1116718
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了