Collaborative Research: HCC: Medium: Deep Learning-Based Tracking of Eyes and Lens Shape from Purkinje Images for Holographic Augmented Reality Glasses

合作研究:HCC:媒介:基于深度学习的浦肯野图像眼睛和晶状体形状跟踪,用于全息增强现实眼镜

基本信息

  • 批准号:
    2107454
  • 负责人:
  • 金额:
    $ 97.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project seeks to develop head-worn Augmented Reality (AR) systems that look and feel like ordinary prescription eyeglasses, and can be worn comfortably all day, with a field of view that matches the wide field of view of today's eyewear. Such future AR glasses will enable vast new capabilities for individuals and groups, integrating computer assistance as 3D enhancements within the user’s surroundings. For example, wearing such AR glasses, an individual will see around them remote individuals as naturally as they now see and interact with nearby real individuals. Virtual personal assistants such as Alexa and Siri may become 3D-embodied within these AR glasses and situationally aware, guiding the wearer around a new airport, or coaching the user in customized physical exercise. This project aims to advance two crucial, synergistic parts of such AR glasses: 1) the see-through display itself and 2) the 3D eye-tracking subsystem. The see-through display needs to be both very compact and have a wide field of view. To achieve these display requirements, the project uses true holographic image generation, and improves the algorithms that generate these holograms by a) concentrating higher image quality in the direction and distance of the user's current gaze, and b) algorithmically steering the "eye box" (the precise location where the eye needs to be to observe the image) to the current location of the eye's pupil opening. In current holographic displays, this viewing eye box is typically less than 1 cubic millimeter, far too small for a practical head-worn system. Therefore, a practical system may need both a precise eye tracking system that locates the pupil opening and a display system that algorithmically steers the holographic image to be viewable at that precise location. The 3D eye tracking system also seeks to determine the direction of the user's gaze, and the distance of the point of gaze from the eye (whether near or far), so that the display system can optimize the generated holographic image for the precise focus of attention. The proposed AR display can render images at variable focal lengths, so it could be used for people with visual accommodation issues, thereby allowing them to participate in AR-supported education and training programs. The device could also have other possible uses in medical (such as better understanding of the human visual system) and training fields. The two branches of this project, the holographic display, and the 3D eye tracker, are closely linked and each improved by the other. The 3D eye tracker utilizes an enriched set of signals and sensors (multiple cameras for each eye, and a multiplicity of infra-red (IR) LEDs), from which the system extracts the multiple tracking parameters in real time: the horizontal and vertical gaze angles, the distance accommodation, and the 3D position and size of the pupil's opening. The distance accommodation is extracted by analyzing Purkinje reflections of the IR LEDs from the multiple layers in the eye's cornea and lens. A neural network extracts the aforementioned 3D tracking results from the multiple sensors after being trained on a large body of ground truth data. The training data is generated from multiple human subjects who are exposed, instantaneously to known patterns on external displays at a range of distances and angles from the eye. Simultaneous to these instantaneous patterns, the subject is also shown images from the near-eye holographic image generator whose eye box location and size have been previously optically calibrated. One part of each pattern will be shown, instantaneously, on an external display and the other part, at the same instant, on the holographic display. The subject can only answer correctly a challenge question if they have observed both displays simultaneously. This can only occur if the eye is at a precise 3D location and also at a precise known gaze angle. The eye tracker will be further improved by integrated its training and calibration with the high precision (but very bulky) BinoScopic tracker at UC Berkeley, which tracks using precise maps of the user's retina. The holograhic image generator uses the real time data from the 3D eye tracker to generate holograms whose highest image quality is at the part of image that is currently on the viewer's fovea, and at the distance to which the user is currently accommodated. The image quality is improved by a trained neural network whose inputs are images from a camera placed, during training, at the position of the viewer's eye.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发头戴式增强现实(AR)系统,其外观和感觉就像普通的处方眼镜,并且可以全天舒适地佩戴,其视野与当今眼镜的宽视野相匹配。这种未来的AR眼镜将为个人和团体提供大量新功能,将计算机辅助作为3D增强功能集成在用户周围环境中。例如,佩戴这种AR眼镜,个体将像他们现在看到的那样自然地看到他们周围的远程个体,并与附近的真实的个体进行交互。像Alexa和Siri这样的虚拟个人助理可以在这些AR眼镜中实现3D,并能够感知情况,引导佩戴者在新机场周围走动,或者指导用户进行定制的体育锻炼。该项目旨在推进这种AR眼镜的两个关键的协同部分:1)透视显示器本身和2)3D眼睛跟踪子系统。透视显示器需要非常紧凑并且具有宽视场。为了实现这些显示要求,该项目使用真正的全息图像生成,并通过以下方式改进生成这些全息图的算法:a)在用户当前注视的方向和距离上集中更高的图像质量,以及B)通过算法将“眼框”(眼睛需要观察图像的精确位置)转向眼睛瞳孔张开的当前位置。在当前的全息显示器中,该观看眼箱通常小于1立方毫米,对于实际的头戴式系统来说太小了。 因此,实际系统可能需要定位瞳孔开口的精确眼睛跟踪系统和在算法上操纵全息图像以在该精确位置处可见的显示系统。 3D眼睛跟踪系统还试图确定用户注视的方向以及注视点距眼睛的距离(无论是近还是远),使得显示系统可以优化所生成的全息图像以用于精确的注意力聚焦。拟议的AR显示器可以以可变焦距呈现图像,因此它可以用于有视觉调节问题的人,从而使他们能够参与AR支持的教育和培训计划。该设备还可以在医疗(例如更好地了解人类视觉系统)和培训领域中有其他可能的用途。该项目的两个分支,全息显示和3D眼动仪,紧密相连,彼此改进。3D眼睛跟踪器利用丰富的信号和传感器集合(每只眼睛的多个摄像机和多个红外(IR)LED),系统从中以真实的时间提取多个跟踪参数:水平和垂直注视角度、距离调节以及瞳孔开口的3D位置和大小。通过分析来自眼睛的角膜和透镜中的多个层的IR LED的浦肯野反射来提取距离调节。神经网络在对大量地面实况数据进行训练之后从多个传感器提取上述3D跟踪结果。训练数据是从多个人类受试者生成的,这些受试者在离眼睛一定距离和角度的范围内瞬时暴露于外部显示器上的已知图案。在这些瞬时图案的同时,还向受试者显示来自近眼全息图像生成器的图像,其眼箱位置和尺寸先前已经被光学校准。每个图案的一部分将在外部显示器上即时显示,而另一部分在同一时刻在全息显示器上显示。受试者只有在同时观察两个显示屏时才能正确回答质询问题。这只能在眼睛处于精确的3D位置并且还处于精确的已知注视角度时发生。 眼动仪将通过将其训练和校准与加州大学伯克利分校的高精度(但非常庞大)BinoScopic跟踪器相结合来进一步改进,该跟踪器使用用户视网膜的精确地图进行跟踪。全息图像生成器使用来自3D眼睛跟踪器的真实的时间数据来生成全息图,该全息图的最高图像质量是在当前在观看者的中央凹上的图像部分处以及在用户当前被容纳的距离处。图像质量通过一个训练过的神经网络来提高,该网络的输入是在训练过程中放置在观察者眼睛位置的摄像机的图像。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometry-Aware Eye Image-To-Image Translation
  • DOI:
    10.1145/3517031.3532524
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Conny Lu;Qian Zhang;K. Krishnakumar;Jixu Chen;H. Fuchs;S. Talathi;Kunlin Liu
  • 通讯作者:
    Conny Lu;Qian Zhang;K. Krishnakumar;Jixu Chen;H. Fuchs;S. Talathi;Kunlin Liu
Hogel-Free Holography
  • DOI:
    10.1145/3516428
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Praneeth Chakravarthula;Ethan Tseng;H. Fuchs;Felix Heide
  • 通讯作者:
    Praneeth Chakravarthula;Ethan Tseng;H. Fuchs;Felix Heide
Pupil-Aware Holography
  • DOI:
    10.1145/3550454.3555508
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Praneeth Chakravarthula;Seung-Hwan Baek;Ethan Tseng;Andrew Maimone;Grace Kuo;Florian Schiffers;N. Matsuda;O. Cossairt;Douglas Lanman;Felix Heide
  • 通讯作者:
    Praneeth Chakravarthula;Seung-Hwan Baek;Ethan Tseng;Andrew Maimone;Grace Kuo;Florian Schiffers;N. Matsuda;O. Cossairt;Douglas Lanman;Felix Heide
Joint neural phase retrieval and compression for energy- and computation-efficient holography on the edge
  • DOI:
    10.1145/3528223.3530070
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yujie Wang;Praneeth Chakravarthula;Qingyan Sun;Baoquan Chen
  • 通讯作者:
    Yujie Wang;Praneeth Chakravarthula;Qingyan Sun;Baoquan Chen
Stochastic Light Field Holography
  • DOI:
    10.1109/iccp56744.2023.10233716
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Florian Schiffers;Praneeth Chakravarthula;N. Matsuda;Grace Kuo;Ethan Tseng;Douglas Lanman;Felix Heide-Felix-Hei
  • 通讯作者:
    Florian Schiffers;Praneeth Chakravarthula;N. Matsuda;Grace Kuo;Ethan Tseng;Douglas Lanman;Felix Heide-Felix-Hei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Fuchs其他文献

Three-dimensional display techniques in radiation therapy treatment planning.
放射治疗治疗计划中的三维显示技术。
PD-Insighter: A Visual Analytics System to Monitor Daily Actions for Parkinson's Disease Treatment
PD-Insighter:监控帕金森病治疗日常行为的可视化分析系统
Optical versus Video See-Through Head-Mounted Displays
光学与视频透视头戴式显示器
  • DOI:
    10.1201/9780585383590-10
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Rolland;Henry Fuchs
  • 通讯作者:
    Henry Fuchs

Henry Fuchs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Fuchs', 18)}}的其他基金

RI: Small: Uncovering Dynamics from Internet Imagery
RI:小:从互联网图像中揭示动态
  • 批准号:
    1816148
  • 财政年份:
    2018
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
FW-HTF: Collaborative Research: Enhancing Human Capabilities through Virtual Personal Embodied Assistants in Self-Contained Eyeglasses-Based Augmented Reality (AR) Systems
FW-HTF:协作研究:通过基于独立眼镜的增强现实 (AR) 系统中的虚拟个人助理增强人类能力
  • 批准号:
    1840131
  • 财政年份:
    2018
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: 3D Audio Augmentation for Limited Field of View Augmented Reality Systems for Medical Training
CHS:小型:协作研究:用于有限视场的 3D 音频增强医疗培训增强现实系统
  • 批准号:
    1718313
  • 财政年份:
    2017
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
EAGER: Wide Field of View Augmented Reality Display with Dynamic Focus
EAGER:具有动态聚焦功能的宽视场增强现实显示器
  • 批准号:
    1645463
  • 财政年份:
    2016
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Computer Guided Laparoscopy Training
SCH:INT:协作研究:计算机引导腹腔镜检查培训
  • 批准号:
    1622515
  • 财政年份:
    2016
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
II-New: Seeing the Future: Ubiquitous Computing in EyeGlasses
II-新:预见未来:眼镜中无处不在的计算
  • 批准号:
    1405847
  • 财政年份:
    2014
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
CHS: Small: Minimal-Latency Tracking and Display for Head-Worn Augmented Reality Systems
CHS:小型:头戴式增强现实系统的最小延迟跟踪和显示
  • 批准号:
    1423059
  • 财政年份:
    2014
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Continuing Grant
HCC: CGV: Small: Eyeglass-Style Multi-Layer Optical See-Through Displays for Augmented Reality
HCC:CGV:小型:用于增强现实的眼镜式多层光学透视显示器
  • 批准号:
    1319567
  • 财政年份:
    2013
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
CRI: IAD Integrated Projector-Camera Modules for the Capture and Creation of Wide-Area Immersive Experiences
CRI:IAD 集成投影仪相机模块,用于捕捉和创建广域沉浸式体验
  • 批准号:
    0751187
  • 财政年份:
    2008
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
ITR/SI: Real-Time Long-Distance Terascale Computation for Full Bandwidth Tele-Immersion
ITR/SI:用于全带宽远程沉浸的实时长距离万亿级计算
  • 批准号:
    0121293
  • 财政年份:
    2001
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

UQCRC2协同NFATC2转录上调DDX24并通过 抑制铁死亡促进肝细胞癌生长的分子机 制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于聚多巴胺纳米粒负载齐墩果酸在肝细胞癌光热-化疗协同治疗中的应用及机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
sgp130Fc联合PD-L1单抗协同抑制HCC的生物学功能及分子机制研究
  • 批准号:
    2024Y9629
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于“增效减毒”策略的毛蕊花糖苷调控INPP4B协同奥沙利铂治疗肝细胞癌的作用机制研究
  • 批准号:
    82360795
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
肿瘤归巢纳米药物协同多位点多模态放疗重塑肝细胞癌多病灶抵抗性肿瘤微环境以增强远端效应的研究
  • 批准号:
    32301173
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
仿生HULC富氧纳米复合物介导声动力驱动PTEN协同治疗HCC的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
双pH响应智能纳米背囊联合GPC3-CAR T细胞构建肝细胞癌协同免疫治疗体系的研究
  • 批准号:
    82001882
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
新型双药联载纳米递药系统用于分子靶向-光热协同治疗促进肝细胞癌铁死亡的研究
  • 批准号:
    82003272
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: HCC: Medium: Aligning Robot Representations with Humans
合作研究:HCC:媒介:使机器人表示与人类保持一致
  • 批准号:
    2310757
  • 财政年份:
    2023
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
  • 批准号:
    2327136
  • 财政年份:
    2023
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Bridging Research and Visualization Design Practice via a Sustainable Knowledge Platform
合作研究:HCC:小型:通过可持续知识平台桥接研究和可视化设计实践
  • 批准号:
    2147044
  • 财政年份:
    2023
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Computational Design and Application of Wearable Haptic Knits
合作研究:HCC:小型:可穿戴触觉针织物的计算设计与应用
  • 批准号:
    2301355
  • 财政年份:
    2023
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
  • 批准号:
    2302969
  • 财政年份:
    2023
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Understanding Online-to-Offline Sexual Violence through Data Donation from Users
合作研究:HCC:小型:通过用户捐赠的数据了解线上线下性暴力
  • 批准号:
    2401775
  • 财政年份:
    2023
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Supporting Flexible and Safe Disability Representation in Social Virtual Reality
合作研究:HCC:小型:支持社交虚拟现实中灵活、安全的残疾表征
  • 批准号:
    2328183
  • 财政年份:
    2023
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
  • 批准号:
    2326998
  • 财政年份:
    2023
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: "Unboxing" Haptic Texture Perception: Closing the Loop from Skin Contact Mechanics to Novel Haptic Device
合作研究:HCC:媒介:“拆箱”触觉纹理感知:闭合从皮肤接触力学到新型触觉设备的循环
  • 批准号:
    2312153
  • 财政年份:
    2023
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Computational Design and Application of Wearable Haptic Knits
合作研究:HCC:小型:可穿戴触觉针织物的计算设计与应用
  • 批准号:
    2301357
  • 财政年份:
    2023
  • 资助金额:
    $ 97.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了