SCH: INT: Collaborative Research: Computer Guided Laparoscopy Training
SCH:INT:协作研究:计算机引导腹腔镜检查培训
基本信息
- 批准号:1622515
- 负责人:
- 金额:$ 76.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IIS-1622589 SCH: INT: Collaborative Research: Computer Guided Laparoscopy TrainingLaparoscopic surgery, when performed by a well-trained surgeon, is a remarkably effective procedure that minimizes complications associated with open incisions, blood loss and post-operative pain. It also reduces recovery time. However, the procedure is more challenging than conventional surgery due to restricted vision, hand-eye coordination problems, limited working space, and lack of tactile sensation. Therefore, effective training and guidance methods are needed to minimize the potential risks inherent in such procedures. The goal of this project is to develop and validate techniques for computer-guided laparoscopic surgical training in a simulated, non-patient based environment. A computer-aided surgical trainer (CAST) will physically guide trainees' instruments during surgical skills practice sessions by utilizing assistive force with augmented reality displays. Guided training will be validated through a pilot experimental study, in which the expertise of computer-guided trainees will be compared to that of instructor-guided trainees. Data such as the time it takes a trainee to execute a particular surgical task, how accurate he or she is, etc., will be collected to analyze task performance precisely and objectively. New scientific methods for motion trajectory planning and path following using assistive force and augmented reality techniques will result from this work. It is anticipated that computer-guided practice will speed up learning and reinforce appropriate techniques, ultimately, leading to better surgical outcomes and improved patient safety. The CAST system should serve as a sophisticated, yet still low-cost, training solution for fundamental medical skills training. The specific objectives are a) to refine and implement a memory- and time-efficient hybrid offline-online optimal path planner for computer-guided training of basic laparoscopic skills. In this task, collision-free trajectory planning methods (such as those used in robotics) will be generated by incorporating offline-online hybrid techniques with memory and computational time efficient path repository. Thus, basic laparoscopic tasks can be planned and guided automatically, using haptic force and augmented reality visualization; b) to design and implement an intelligent, adaptive guidance controller for surgical space navigation, where a fuzzy logic and machine learning-based methods will be developed that will take into account trainees' skill levels so that optimal amount of training assistance can be provided in mastering surgical tasks; c) to design and implement visual guidance techniques through augmented reality overlays that provide 'navigational' cues, supplementing force-based control of surgical instruments; and d) to validate guided training through a pilot study. In this task, trainees' performance using computer guidance methods will be compared, using statistical analysis, to that of unguided trainees. The principal investigators will aim to increase the participation of undergraduate students, and in particular of underrepresented groups, through collaboration with the well-established programs at both PIs' institutions and through sponsorship of senior projects and independent study courses.
IIS-1622589 SCH:INT:协作研究:计算机引导的腹腔镜手术培训当由训练有素的外科医生进行时,腹腔镜手术是一种非常有效的手术,可以最大限度地减少与开放切口、失血和术后疼痛相关的并发症。它还可以缩短恢复时间。然而,由于视力受限、手眼协调问题、工作空间有限以及缺乏触觉,该手术比传统手术更具挑战性。因此,需要有效的培训和指导方法,以最大限度地减少此类程序所固有的潜在风险。该项目的目标是开发和验证在模拟的、非患者为基础的环境中进行计算机引导的腹腔镜手术培训的技术。计算机辅助手术训练器(CAST)将在手术技能练习期间通过利用增强现实显示的辅助力量来物理指导受训者的器械。指导培训将通过一项试验性实验研究进行验证,在该研究中,将比较计算机指导受训人员和教员指导受训人员的专门知识。将收集受训人员执行特定外科任务所需的时间、他或她的准确度等数据,以准确和客观地分析任务表现。这项工作将产生利用辅助力和增强现实技术进行运动轨迹规划和路径跟踪的新的科学方法。预计计算机引导的实践将加快学习和加强适当的技术,最终导致更好的手术结果和改善患者的安全性。CAST系统应该作为基本医疗技能培训的一种复杂但仍低成本的培训解决方案。具体目标是a)改进和实施一种内存和时间效率高的离线-在线混合最优路径规划器,用于计算机引导的基本腹腔镜技能培训。在这项任务中,无碰撞轨迹规划方法(如机器人中使用的方法)将通过将离线-在线混合技术与内存和计算时间高效的路径库相结合来生成。因此,可以利用触觉和增强现实可视化来自动规划和引导基本的腹腔镜任务;b)设计和实施手术空间导航的智能、自适应指导控制器,其中将开发考虑受训者技能水平的模糊逻辑和基于机器学习的方法,以便在掌握手术任务时能够提供最佳数量的训练协助;c)通过提供“导航”提示的增强现实覆盖设计和实施视觉引导技术,以补充对手术器械的基于力量的控制;以及d)通过试点研究来验证引导训练。在这项任务中,使用计算机指导方法的受训人员的表现将通过统计分析与未接受指导的受训人员的表现进行比较。主要调查人员将致力于通过与两个私人投资机构的成熟方案合作,以及通过赞助高级项目和独立学习课程,增加本科生的参与,特别是代表不足的群体的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henry Fuchs其他文献
Three-dimensional display techniques in radiation therapy treatment planning.
放射治疗治疗计划中的三维显示技术。
- DOI:
- 发表时间:
1989 - 期刊:
- 影响因子:0
- 作者:
J. Rosenman;G. Sherouse;Henry Fuchs;S. Pizer;Andrew L. Skinner;C. Mosher;Kevin L. Novins;Joel E. Tepper - 通讯作者:
Joel E. Tepper
PD-Insighter: A Visual Analytics System to Monitor Daily Actions for Parkinson's Disease Treatment
PD-Insighter:监控帕金森病治疗日常行为的可视化分析系统
- DOI:
10.1145/3613904.3642215 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jade Kandel;Chelsea Duppen;Qian Zhang;Howard Jiang;Angelos Angelopoulos;Ashley Neall;Pranav Wagh;D. Szafir;Henry Fuchs;Michael Lewek;D. Szafir - 通讯作者:
D. Szafir
Optical versus Video See-Through Head-Mounted Displays
光学与视频透视头戴式显示器
- DOI:
10.1201/9780585383590-10 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
J. Rolland;Henry Fuchs - 通讯作者:
Henry Fuchs
Henry Fuchs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henry Fuchs', 18)}}的其他基金
Collaborative Research: HCC: Medium: Deep Learning-Based Tracking of Eyes and Lens Shape from Purkinje Images for Holographic Augmented Reality Glasses
合作研究:HCC:媒介:基于深度学习的浦肯野图像眼睛和晶状体形状跟踪,用于全息增强现实眼镜
- 批准号:
2107454 - 财政年份:2021
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
RI: Small: Uncovering Dynamics from Internet Imagery
RI:小:从互联网图像中揭示动态
- 批准号:
1816148 - 财政年份:2018
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
FW-HTF: Collaborative Research: Enhancing Human Capabilities through Virtual Personal Embodied Assistants in Self-Contained Eyeglasses-Based Augmented Reality (AR) Systems
FW-HTF:协作研究:通过基于独立眼镜的增强现实 (AR) 系统中的虚拟个人助理增强人类能力
- 批准号:
1840131 - 财政年份:2018
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: 3D Audio Augmentation for Limited Field of View Augmented Reality Systems for Medical Training
CHS:小型:协作研究:用于有限视场的 3D 音频增强医疗培训增强现实系统
- 批准号:
1718313 - 财政年份:2017
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
EAGER: Wide Field of View Augmented Reality Display with Dynamic Focus
EAGER:具有动态聚焦功能的宽视场增强现实显示器
- 批准号:
1645463 - 财政年份:2016
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
II-New: Seeing the Future: Ubiquitous Computing in EyeGlasses
II-新:预见未来:眼镜中无处不在的计算
- 批准号:
1405847 - 财政年份:2014
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
CHS: Small: Minimal-Latency Tracking and Display for Head-Worn Augmented Reality Systems
CHS:小型:头戴式增强现实系统的最小延迟跟踪和显示
- 批准号:
1423059 - 财政年份:2014
- 资助金额:
$ 76.94万 - 项目类别:
Continuing Grant
HCC: CGV: Small: Eyeglass-Style Multi-Layer Optical See-Through Displays for Augmented Reality
HCC:CGV:小型:用于增强现实的眼镜式多层光学透视显示器
- 批准号:
1319567 - 财政年份:2013
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
CRI: IAD Integrated Projector-Camera Modules for the Capture and Creation of Wide-Area Immersive Experiences
CRI:IAD 集成投影仪相机模块,用于捕捉和创建广域沉浸式体验
- 批准号:
0751187 - 财政年份:2008
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
ITR/SI: Real-Time Long-Distance Terascale Computation for Full Bandwidth Tele-Immersion
ITR/SI:用于全带宽远程沉浸的实时长距离万亿级计算
- 批准号:
0121293 - 财政年份:2001
- 资助金额:
$ 76.94万 - 项目类别:
Continuing Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10573225 - 财政年份:2021
- 资助金额:
$ 76.94万 - 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10392429 - 财政年份:2021
- 资助金额:
$ 76.94万 - 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
- 批准号:
2124270 - 财政年份:2021
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014554 - 财政年份:2020
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014552 - 财政年份:2020
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2019389 - 财政年份:2020
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013651 - 财政年份:2020
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013122 - 财政年份:2020
- 资助金额:
$ 76.94万 - 项目类别:
Standard Grant