IRES Track 1: Sensor Information Processing and Machine Learning for Wearable Devices
IRES Track 1:可穿戴设备的传感器信息处理和机器学习
基本信息
- 批准号:2107439
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This IRES project brings together advances in sensor devices with machine learning and digital signal processing (DSP) algorithms in an international research endeavor that promises to elevate precision in mobile and wearable technologies. Arizona State University (ASU) faculty and students will collaborate with the Dublin City University (DCU) Insight Center for Data Analytics, which has a synergistic relationship with ASU in several areas including sensors, analytics, machine learning (ML), wearables and Internet of Things (IoT). ASU brings expertise in flexible sensors, chemical and biosensors, statistical signal processing, bio-informatics, and machine learning. DCU brings expertise in data analytics, human activity monitoring, environmental monitoring, artificial intelligence, sensor analytics and big data analysis. IRES participating students will spend an immersive six-week summer program at the DCU Insight Center to actively improve their ML and sensor research skills; participants will produce and evaluate sensor analytics, and create algorithms and software for IoT, wearables and mobile health monitoring. Programs and workshops will be established to train IRES participants to skillfully and effectively present their research in international settings. Weekly presentations at the international site and guidance by international mentors will enrich the cohort’s professional experience. Embedding students in the DCU Insight center funded by European Union (EU) and Irish Science Foundation (ISF) grants will provide knowledge on EU and international research practices, ethics, standards and policies.The goals of this project are to: a) advance the science of integrated design of sensors and machine learning algorithms, b) train and enable a diverse cohort of students to make research contributions in integrated sensing and ML for IoT systems, c) gain knowledge on international policies/standards of deploying AI, big data systems, and sensors, and d) provide experiences that broaden understanding of global practices and career options. This project is motivated by the fact that inexpensive sensors are required for IoT, mobile health and wearable systems; to achieve the requisite precision, sensor design must be accompanied by corrective ML and SP algorithms. IRES research therefore focuses on the overlap of new sensor device design and novel ML algorithm development. In terms of ML, one of the key objectives is to develop compact, low power algorithms adequate for integration with sensors and mobile devices. IRES project areas include flexible sensors, sensor information management, efficient deep learning, and big data analysis. Example research project applications include biomarker detection, big data processing, gait detection, and deep neural nets for sensor and IoT systems. Work will be disseminated via collaborative publications and presentations in international conferences and refereed journals. Industry engagement at the ASU SenSIP and DCU Insight centers will provide ongoing valuable feedback, and annual external evaluation will assess progress and outcomes across all IRES activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该IRES项目将传感器设备的进步与机器学习和数字信号处理(DSP)算法结合在一起,致力于提高移动的和可穿戴技术的精度。 亚利桑那州立大学(ASU)的教师和学生将与都柏林城市大学(DCU)数据分析洞察中心合作,该中心与亚利桑那州立大学在传感器、分析、机器学习(ML)、可穿戴设备和物联网(IoT)等多个领域建立了协同关系。 ASU带来了灵活的传感器,化学和生物传感器,统计信号处理,生物信息学和机器学习的专业知识。DCU带来了数据分析,人类活动监测,环境监测,人工智能,传感器分析和大数据分析方面的专业知识。 参与IRES的学生将在DCU Insight Center参加为期六周的沉浸式暑期课程,以积极提高他们的ML和传感器研究技能;参与者将制作和评估传感器分析,并为物联网,可穿戴设备和移动的健康监测创建算法和软件。将设立方案和讲习班,培训IRES参与者在国际环境中熟练有效地介绍他们的研究。每周在国际地点的演讲和国际导师的指导将丰富该群体的专业经验。在由欧盟(EU)和爱尔兰科学基金会(ISF)资助的DCU Insight中心嵌入学生将提供有关欧盟和国际研究实践,道德,标准和政策的知识。该项目的目标是:a)推进传感器和机器学习算法的集成设计科学,B)培训并使不同的学生群体能够在物联网系统的集成传感和ML方面做出研究贡献,c)获得部署AI,大数据系统和传感器的国际政策/标准的知识,以及d)提供经验,拓宽对全球实践和职业选择的理解。 该项目的动机是物联网,移动的健康和可穿戴系统需要廉价的传感器;为了达到必要的精度,传感器设计必须伴随着纠正ML和SP算法。 因此,IRES的研究重点是新传感器器件设计和新型ML算法开发的重叠。在ML方面,关键目标之一是开发适合与传感器和移动的设备集成的紧凑、低功耗算法。IRES项目领域包括灵活的传感器、传感器信息管理、高效的深度学习和大数据分析。 示例研究项目应用包括生物标志物检测、大数据处理、步态检测以及用于传感器和物联网系统的深度神经网络。工作将通过合作出版物和在国际会议和经评审的期刊上的介绍进行传播。ASU SenSIP和DCU Insight中心的行业参与将提供持续的有价值的反馈,年度外部评估将评估所有IRES活动的进展和成果。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Raupp其他文献
Gregory Raupp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Raupp', 18)}}的其他基金
Acquisition of Inductively Coupled Plasma Etch Tool for New Microsystems Technologies
采购用于新微系统技术的电感耦合等离子体蚀刻工具
- 批准号:
0116682 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
New Technologies for the Environment: Vapor Deposition of Photoimageable Dielectric Films
环境新技术:光成像介电薄膜的气相沉积
- 批准号:
0086834 - 财政年份:2000
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF/EPA: Environmentally-Benign Processing Low Dielectric Constant Polymers for Microelectronics Applications
NSF/EPA:用于微电子应用的环保加工低介电常数聚合物
- 批准号:
9613377 - 财政年份:1996
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mechanism and Kinetics of Selective Tungsten Chemical Vapor Deposition
选择性钨化学气相沉积的机理和动力学
- 批准号:
8708992 - 财政年份:1987
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: An Integrated and Miniaturized Opioid Sensor System: Advancing Evidence-Based Strategies for Addressing the Opioid Crisis
NSF 融合加速器轨道 L:集成和小型化阿片类药物传感器系统:推进解决阿片类药物危机的循证策略
- 批准号:
2344344 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Accelerating VOC Sensor Advances and Translation by Machine Learning and Bioinspiration
NSF 融合加速器轨道 L:通过机器学习和生物灵感加速 VOC 传感器的进步和转化
- 批准号:
2344423 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SCC-IRG Track 1: Connecting coastal communities with continuous, sensor-based monitoring of water quality
SCC-IRG 第 1 轨道:通过基于传感器的持续水质监测将沿海社区连接起来
- 批准号:
2317235 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
An AI enabled IoT sensor to monitor railway tracks, identify earthworks failures 90% faster and reduce dangerous on-track person-hours
An%20AI%20enabled%20IoT%20sensor%20to%20monitor%20railway%20tracks、%20identify%20earthworks%20failures%2090%%20faster%20and%20reduce%20dangerous%20on-track%20person-hours
- 批准号:
10077750 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
The Leaves on the Line Track Sensor - RAMAN 4 the Railways
线路上的叶子轨道传感器 - RAMAN 4 铁路
- 批准号:
10087509 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
IRES Track I: U.S.-Bangladesh collaboration to improve air quality: Application of low-cost sensor technologies and satellite remote sensing
IRES 第一轨:美国与孟加拉国合作改善空气质量:低成本传感器技术和卫星遥感的应用
- 批准号:
2153605 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SCC-IRG Track 1: Common SENSES (Standards for ENacting Sensor networks for an Equitable Society) : Community-Led, Science-Driven Climate Resilience in Boston, MA
SCC-IRG 第 1 轨道:Common SENSES(为公平社会制定传感器网络标准):马萨诸塞州波士顿社区主导、科学驱动的气候复原力
- 批准号:
2230036 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Expand QISE: Track 1: RLQSC: Reinforcement Learning for the Optimal Design of Programmable Quantum Sensor Circuit
展开 QISE:轨道 1:RLQSC:用于可编程量子传感器电路优化设计的强化学习
- 批准号:
2231377 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RII Track-2 FEC: Advancing Manufacturing and Biotechnology through an On-Demand Sensor Platform: Investments in the Development of Engineering Principles and the Future Workforce
RII Track-2 FEC:通过按需传感器平台推进制造和生物技术:投资于工程原理和未来劳动力的开发
- 批准号:
2119237 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
Mild Trauma Impact Sensor (MTIS): development of a new, highly-accurate sensor platform to measure and track repetitive, subconcussive head injuries in adolescents and amateur sports teams
轻度创伤撞击传感器 (MTIS):开发一种新型高精度传感器平台,用于测量和跟踪青少年和业余运动队重复性亚脑震荡性头部损伤
- 批准号:
10029269 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D














{{item.name}}会员




