Novel Decompositions and Fast Numerical Methods for Peridynamics
近场动力学的新颖分解和快速数值方法
基本信息
- 批准号:2108588
- 负责人:
- 金额:$ 24.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Peridynamic theory is an emerging modeling tool used in engineering applications to analyze material discontinuities including dynamic fracture, spontaneous crack formation, and fragmentation. Despite a growing body of experimental evidence in favor of peridynamic modeling, there remain several mathematical and computational challenges that may hinder its potential widespread use in applications. On the computational side, standard numerical methods can be prohibitively expensive due to the need to handle longer range interactions, while on the theoretical side, progress is needed in understanding the sources and evolution of discontinuities and in identifying the local limiting behavior and the connection to nonlinear elastodynamics. Furthermore, while for practical engineering usage, precise application of boundary conditions is essential, nonlocal boundary conditions are still poorly understood. This project addresses these challenges by developing new mathematical and computational strategies which advance peridynamic modeling and increase its appeal for engineering applications. The project provides training opportunities in applied and computational mathematics for undergraduate and graduate students. This project introduces a unified and systematic approach based on Fourier spectral analysis for studying linear and nonlinear peridynamic models and their applications. The approach is built on a foundation of analytical and computational methods for linear peridynamics, which are then lifted to nonlinear peridynamics. The investigators will study the Fourier multipliers of peridynamic operators and develop efficient algorithms to compute them. This Fourier multipliers analysis will be used to develop regularity results, spectral solvers in periodic setups, and a Fourier Continuation method for boundary value conditions. The spectral methods introduced are efficient and well-suited to study peridynamics as they decouple the nonlocality parameter and the grid size, in contrast to finite difference or finite element methods in which the nonlocality scales with grid size. From the applications point of view, the Fourier analysis approach will be utilized in the context of peridynamics to study nonlocal boundary conditions, to investigate the sources and evolution of discontinuities, and to better understand the connection between nonlocal equations and their local classical counterparts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
周期动力学理论是一种新兴的工程应用建模工具,用于分析材料的不连续性,包括动态断裂、自发裂纹的形成和破碎。尽管越来越多的实验证据支持周期动力学建模,但仍然存在一些数学和计算挑战,可能会阻碍其在应用中的潜在广泛应用。在计算方面,由于需要处理更长范围的相互作用,标准的数值方法可能昂贵得令人望而却步,而在理论方面,在理解不连续的来源和演变以及在识别局部极限行为和与非线性弹性动力学的联系方面需要取得进展。此外,尽管对于实际工程应用来说,边界条件的精确应用是必不可少的,但对非局部边界条件的理解仍然很少。该项目通过开发新的数学和计算策略来解决这些挑战,这些策略促进了动态建模并增加了其对工程应用的吸引力。该项目为本科生和研究生提供了应用数学和计算数学的培训机会。本项目介绍了一种基于傅里叶谱分析的研究线性和非线性动力学模型及其应用的统一而系统的方法。该方法建立在线性周期动力学的分析和计算方法的基础上,然后将其提升到非线性周期动力学。研究人员将研究周期动力学算子的傅里叶乘子,并开发有效的算法来计算它们。这种傅里叶乘子分析将用于开发正则性结果、周期设置中的谱求解器以及用于边值条件的傅立叶连续方法。与非局域性参数随网格大小成比例的有限差分或有限元方法相比,谱方法是有效的,非常适合于研究周期动力学,因为它们将非局域性参数与网格尺寸解耦。从应用的角度来看,傅立叶分析方法将在周期动力学的背景下用于研究非局部边界条件,调查不连续的来源和演化,并更好地了解非局部方程与其本地经典方程之间的联系。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
REGULARITY OF SOLUTIONS FOR NONLOCAL DIFFUSION EQUATIONS ON PERIODIC DISTRIBUTIONS
- DOI:10.1216/jie.2023.35.81
- 发表时间:2022-09
- 期刊:
- 影响因子:0.8
- 作者:I. Mustapha;Bacim Alali;Nathan Albin
- 通讯作者:I. Mustapha;Bacim Alali;Nathan Albin
Linear Peridynamics Fourier Multipliers and Eigenvalues
线性近场动力学傅里叶乘子和特征值
- DOI:10.1007/s42102-023-00102-y
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Alali, Bacim;Albin, Nathan
- 通讯作者:Albin, Nathan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bacim Alali其他文献
Multiscale analysis of heterogeneous media for local and nonlocal continuum theories
局域和非局域连续体理论的异质介质多尺度分析
- DOI:
10.31390/gradschool_dissertations.3674 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Bacim Alali - 通讯作者:
Bacim Alali
Fourier Spectral Methods for Nonlocal Models
非局部模型的傅里叶谱方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bacim Alali;Nathan Albin - 通讯作者:
Nathan Albin
Fourier multipliers for nonlocal Laplace operators
非局部拉普拉斯算子的傅里叶乘子
- DOI:
10.1080/00036811.2019.1692134 - 发表时间:
2018 - 期刊:
- 影响因子:1.1
- 作者:
Bacim Alali;Nathan Albin - 通讯作者:
Nathan Albin
Fourier multipliers for peridynamic Laplace operators
近场动力学拉普拉斯算子的傅立叶乘子
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Bacim Alali;Nathan Albin - 通讯作者:
Nathan Albin
Multiscale Analysis of Heterogeneous Media in the Peridynamic Formulation
近场动力学公式中异质介质的多尺度分析
- DOI:
10.21236/ada513215 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Bacim Alali;R. Lipton - 通讯作者:
R. Lipton
Bacim Alali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Forbidding Induced Subgraphs: Decompositions, Coloring and Algorithms
禁止诱导子图:分解、着色和算法
- 批准号:
2348219 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Hypergraph Signal Processing and Networks via t-Product Decompositions
合作研究:CIF:小型:通过 t 产品分解的超图信号处理和网络
- 批准号:
2230161 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Cell decompositions of quiver Grassmannians
箭袋格拉斯曼人的细胞分解
- 批准号:
2302620 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Hypergraph Signal Processing and Networks via t-Product Decompositions
合作研究:CIF:小型:通过 t 产品分解的超图信号处理和网络
- 批准号:
2230162 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Optimization Theories, Algorithms, and Interfeces for General Tensor Decompositions
一般张量分解的优化理论、算法和接口
- 批准号:
23H03419 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Designs and cycle decompositions
设计和循环分解
- 批准号:
RGPIN-2019-04328 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Discovery Grants Program - Individual
Structure in Designs, Coverings and Decompositions
设计、覆盖和分解的结构
- 批准号:
RGPIN-2022-03816 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Discovery Grants Program - Individual
Cycle decompositions of graphs and eulerian properties of hypergraphs
图的循环分解和超图的欧拉性质
- 批准号:
RGPIN-2022-02994 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Discovery Grants Program - Individual
Resolvable cycle decompositions of complete symmetric equipartite digraphs
完全对称等分有向图的可解循环分解
- 批准号:
559541-2021 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Graph decompositions via probability and designs
通过概率和设计进行图分解
- 批准号:
EP/V025953/1 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Fellowship