High Fidelity Fluid-Kinetic Hybrid Modeling of Intense, Short Pulse Laser Plasma Interactions
强短脉冲激光等离子体相互作用的高保真流体动力学混合建模
基本信息
- 批准号:2108788
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is dedicated to the development of new computational tools for studying laser-plasma accelerators that achieve high physical fidelity at reasonable computational cost. The key element is the use of multiple physics models, each tuned to accurately represent particular plasma processes. The project includes the development of new two-dimensional simulation codes which will be used to determine the key physical processes involved in electron beam formation in laser-plasma accelerators. Knowledge gained in this project will aid the effort to realize the technological promise of laser-plasma accelerators with a wide range of applications from high-energy physics, astrophysics, and nuclear science to medicine, biology, and chemistry. Additionally, this project has an important educational component and will aid in workforce development by providing training in the basic plasma physics and the physics underlying advanced accelerator technologies.Laser-plasma acceleration is a key enabling technology for a new generation of compact particle and radiation sources. Detailed manipulation of phase space will lead to a further revolution in advanced accelerators. Realizing these advances requires exploiting the promise of laser-plasma accelerators with a first principles understanding of the phase-space dynamics of these systems. Clear and complete understanding of phase-space processes opens the door to the manipulation of phase space and to greater control over the electron beam parameters. High-fidelity computational tools are essential to developing this understanding. Multi-physics approaches alter the physics content of the models, depending on the system behavior, allowing for high accuracy while keeping the computational cost to manageable levels. Many of the technological applications of intense-laser plasma interactions, such as compact, next-generation light sources, have stringent limits on beam quality that exceed what is currently available. The results of this study are expected to advance the development of these technologies, having ultimate applications in a wide range of fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目致力于开发新的计算工具,用于研究以合理的计算成本实现高物理保真度的激光等离子体加速器。关键要素是使用多个物理模型,每个模型都经过调整,以准确地表示特定的等离子体过程。该项目包括开发新的二维模拟代码,该代码将用于确定激光等离子体加速器中电子束形成所涉及的关键物理过程。从该项目中获得的知识将有助于实现激光等离子体加速器的技术前景,该加速器具有从高能物理、天体物理和核科学到医学、生物和化学的广泛应用。此外,该项目还有一个重要的教育组成部分,将通过提供基本等离子体物理学和先进加速器技术背后的物理学方面的培训来帮助劳动力发展。激光等离子体加速是新一代紧凑型粒子和辐射源的关键使能技术。相空间的详细操作将导致先进加速器的进一步革命。要实现这些进展,需要利用激光-等离子体加速器的前景,对这些系统的相空间动力学有一个基本的了解。对相空间过程的清楚和完整的理解为控制相空间和更好地控制电子束参数打开了大门。高保真的计算工具对于发展这种理解是必不可少的。多种物理方法会根据系统行为改变模型的物理内容,从而实现高精度,同时将计算成本保持在可管理的水平。强激光等离子体相互作用的许多技术应用,如紧凑型下一代光源,对光束质量有严格的限制,超过了目前可用的限制。这项研究的结果有望推动这些技术的发展,最终在广泛的领域得到应用。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cauchy-type integral method for solving the linearized one-dimensional Vlasov-Poisson equation
求解线性化一维 Vlasov-Poisson 方程的柯西型积分法
- DOI:10.1103/physreve.107.l063201
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Lee, Frank M.;Shadwick, B. A.
- 通讯作者:Shadwick, B. A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley Shadwick其他文献
Bradley Shadwick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley Shadwick', 18)}}的其他基金
High Fidelity Modeling of Laser-Plasma Accelerators
激光等离子体加速器的高保真度建模
- 批准号:
1535678 - 财政年份:2015
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Multi-Physics Modeling of Intense, Short-Pulse Laser-Plasma Interactions
强、短脉冲激光-等离子体相互作用的多物理场建模
- 批准号:
1104683 - 财政年份:2011
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
相似国自然基金
随机进程代数模型的Fluid逼近问题研究
- 批准号:61472343
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
- 批准号:11275269
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Nonlinear Fluid and Kinetic Effects in Nonneutral Plasmas
非中性等离子体中的非线性流体和动力学效应
- 批准号:
2106332 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Diffusive Regularization in Kinetic and Fluid Equations
动力学和流体方程的扩散正则化
- 批准号:
2108209 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
How do fluid simulations reproduce kinetic simulation results?
流体模拟如何再现动力学模拟结果?
- 批准号:
19H01868 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Kinetic interface sensitive tracers – Emerging smart tracer techniques for investigating the dynamics of fluid-fluid interfacial area in multiphase porous media systems
动力学界面敏感示踪剂 â 新兴智能示踪剂技术,用于研究多相多孔介质系统中流体-流体界面区域的动力学
- 批准号:
428614366 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Research Grants
CAREER: Mechanics and Physics at the Boundary Between Solid and Fluid: Probing the Thermodynamic and Kinetic Properties of Gels
职业:固体与流体边界的力学和物理:探索凝胶的热力学和动力学性质
- 批准号:
1935154 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Coupling fluid and kinetic codes for laser-driven inertial fusion energy simulations
用于激光驱动惯性聚变能量模拟的流体和动力学耦合代码
- 批准号:
2228692 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Studentship
Analysis of Non-Linear Partial Differential Equations in Free Boundary Fluid Dynamics and Kinetic Theory
自由边界流体动力学和运动理论中非线性偏微分方程的分析
- 批准号:
1764177 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
From Kinetic Theory to Hydrodynamics: re-imagining two fluid models of particle-laden flows
从动力学理论到流体动力学:重新想象含颗粒流的两种流体模型
- 批准号:
EP/R007438/1 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Research Grant
From Kinetic Theory to Hydrodynamics: re-imagining two fluid models of particle-laden flows
从动力学理论到流体动力学:重新想象含颗粒流的两种流体模型
- 批准号:
EP/R008027/1 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Research Grant