NSF-BSF: Selective Transport of Divalent Cations through Polymeric Membranes Using Host-Guest Chemistry

NSF-BSF:利用主客体化学选择性通过聚合物膜传输二价阳离子

基本信息

  • 批准号:
    2110138
  • 负责人:
  • 金额:
    $ 41.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Producing drinking water from unconventional water sources, such as seawater, brackish water, and municipal wastewater effluent, is crucial for alleviating global water scarcity. Polymeric membranes, such as thin-film composite reverse osmosis (RO) membranes, have been at the forefront of water purification and desalination processes since their advent in the early 1980s. While RO systems are energy efficient and consume only ~25% more than the practical minimum theoretical energy of desalination, RO membranes are susceptible to inorganic scaling caused by scale-forming ions such as sulfate and divalent calcium, magnesium, or barium. Source waters that have high concentrations of these ions and/or require high recovery rates, such as in inland desalination, have an exceptionally high propensity to produce inorganic scale on membranes. Inorganic scaling is known to drastically lower membrane water flux, limit membrane lifetime, increase treatment costs, and increase the energy consumption of membrane processes. Economic and environmental effects of membrane scaling have led to various mitigation approaches, including adjusting solution pH and adding polymeric antiscalants to block crystal growth sites. However, the primary limitation of established techniques is they require the addition of chemicals, such as polymers or strong acids/bases, that are environmentally unfriendly and costly. In collaboration with researchers at Ben-Gurion University, this project will address the imminent need for an alternative, chemical-free method to selectively remove scale-forming ions to mitigate scaling on RO membrane surfaces and improve the economics of desalination processes.The overall goal of the research is to translate selectivity mechanisms of biological channels into polymeric membranes for the purpose of selectively removing scale-forming species in a continuous electrodialysis process. The investigators hypothesize that molecular binding sites that can selectively remove water shells from ions (as seen in some biological channels) will enable highly specific adsorption and transport through membranes. To test this hypothesis, a selective membrane will be created by modifying the surface of conventional membranes with polymers comprising pendant groups with a high chemical affinity for target ions (Task 1). These functional groups are expected to yield unprecedented selectivity because they provide favorable host-guest complexes to selectively remove water shells of target ions (Task 2). This functional prototype will then be used to elucidate selectivity mechanisms for membranes with host-guest chemistry (Task 3), as well as to assess the relationship between the structural properties of those membranes and their selective transport (Task 4). Finally, the insights from Tasks 1-4 will be used to develop a homogenous membrane (Task 5), which will then be tested in electrodialysis for selective removal of scale-forming ions (Task 6). The specific objectives of the project include: (i) investigating the role of ion affinity to chemically tailored polymers in achieving selective transport, (ii) assessing how intrinsic membrane structural properties affect solute transport and selectivity, and (iii) fabricating robust membranes to reduce scaling potential using electrodialysis. The outcome of the project will be a new membrane technology capable of removing scale-forming ions prior to desalination to mitigate scaling on RO membranes. This technology would be the first continuous approach for separating divalent ions from monovalent ions without requiring periodic use of chemicals, overcoming the limitations of existing approaches. This study will also advance the fundamental understanding of selective transport processes by applying transition-state theory to describe solute transport phenomena in terms of entropy and enthalpy. These insights, along with design principles established from this study, will be relevant for separations of other solutes as well, which may later find application in reclaiming valuable resources or removing contaminants of concern from water. This research is jointly funded by NSF and The US-Israel Binational Science foundation through the special submission opportunity NSF 20-094.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从海水、微咸水和城市污水等非常规水源中生产饮用水,对于缓解全球水资源短缺至关重要。聚合物膜,例如薄膜复合反渗透(RO)膜,自其在20世纪80年代初出现以来一直处于水净化和脱盐过程的最前沿。虽然反渗透系统是节能的,并且消耗的能量仅比脱盐的实际最低理论能量多约25%,但反渗透膜容易受到由结垢离子(如硫酸盐和二价钙、镁或钡)引起的无机结垢的影响。具有高浓度的这些离子和/或需要高回收率的源沃茨,例如在内陆脱盐中,具有在膜上产生无机垢的异常高的倾向。已知无机结垢会显著降低膜水通量,限制膜寿命,增加处理成本,并增加膜工艺的能耗。膜结垢的经济和环境影响导致了各种缓解方法,包括调节溶液pH值和添加聚合物阻垢剂以阻断晶体生长位点。然而,已建立的技术的主要限制是它们需要添加化学品,例如聚合物或强酸/碱,这些化学品对环境不友好且昂贵。该项目与本-古里安大学的研究人员合作,将解决对替代品的迫切需求,无化学方法选择性地去除结垢离子,以减轻反渗透膜表面的结垢,并提高脱盐过程的经济性。研究的总体目标是将生物通道的选择性机制转化为聚合物膜,以选择性地去除结垢。在连续电渗析过程中形成物质。研究人员假设,可以选择性地从离子中去除水壳的分子结合位点(如在一些生物通道中所见)将使高度特异性的吸附和通过膜的运输成为可能。为了检验这一假设,将通过用包含对靶离子具有高化学亲和力的侧基的聚合物改性常规膜的表面来产生选择性膜(任务1)。这些官能团预计将产生前所未有的选择性,因为它们提供了有利的主客体复合物,以选择性地去除目标离子的水壳(任务2)。然后,该功能原型将用于阐明具有主客体化学的膜的选择性机制(任务3),以及评估这些膜的结构特性与其选择性转运之间的关系(任务4)。最后,任务1-4的见解将用于开发均质膜(任务5),然后将在电渗析中进行测试,以选择性去除结垢离子(任务6)。该项目的具体目标包括:(i)调查离子亲和力的化学定制的聚合物在实现选择性运输的作用,(ii)评估固有的膜结构特性如何影响溶质运输和选择性,以及(iii)制造坚固的膜,以减少使用电渗析的结垢潜力。该项目的成果将是一种新的膜技术,能够在脱盐之前去除结垢离子,以减轻RO膜的结垢。该技术将是第一种连续分离二价离子和一价离子的方法,无需定期使用化学品,克服了现有方法的局限性。这项研究也将推进选择性运输过程的基本理解,通过应用过渡态理论来描述溶质运输现象的熵和焓。这些见解,沿着从本研究中建立的设计原则,也将与其他溶质的分离相关,这可能在以后发现应用于回收宝贵的资源或从水中去除所关注的污染物。本研究由NSF和美国-以色列两国科学基金会通过特别提交机会NSF 20- 094共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Menachem Elimelech其他文献

Revisiting solute transport in polyamide membranes: Insights from neutral solute partitioning
重新审视聚酰胺膜中的溶质传输:来自中性溶质分配的见解
  • DOI:
    10.1016/j.memsci.2025.124117
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Ruoyu Wang;Menachem Elimelech
  • 通讯作者:
    Menachem Elimelech
Reply to “A resurrection of the Haber-Weiss reaction”
回复“哈伯-维斯反应的复活”
  • DOI:
    10.1038/s41467-021-27824-1
  • 发表时间:
    2022-01-19
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Yumeng Zhao;Meng Sun;Menachem Elimelech
  • 通讯作者:
    Menachem Elimelech
Graphene oxide membranes with stable porous structure for ultrafast water transport
  • DOI:
    DOI: 10.1038/s41565-020-00833-9
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Wen-Hai Zhang;Ming-Jie Yin;Qiang Zhao;Cheng-Gang Jin;Naixin Wang;Shulan Ji;Cody L. Ritt;Menachem Elimelech;Quan-Fu An
  • 通讯作者:
    Quan-Fu An
The role of nanotechnology in tackling global water challenges
纳米技术在应对全球水挑战中的作用
  • DOI:
    10.1038/s41893-018-0046-8
  • 发表时间:
    2018-04-18
  • 期刊:
  • 影响因子:
    27.100
  • 作者:
    Meagan S. Mauter;Ines Zucker;François Perreault;Jay R. Werber;Jae-Hong Kim;Menachem Elimelech
  • 通讯作者:
    Menachem Elimelech
Environmental performance of graphene-based 3D macrostructures
基于石墨烯的三维宏观结构的环境性能
  • DOI:
    10.1038/s41565-018-0325-6
  • 发表时间:
    2019-01-07
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Nariman Yousefi;Xinglin Lu;Menachem Elimelech;Nathalie Tufenkji
  • 通讯作者:
    Nathalie Tufenkji

Menachem Elimelech的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Menachem Elimelech', 18)}}的其他基金

NSF-BSF Application: Selective Electrosorption for Boron Removal and Recovery from Seawater
NSF-BSF 应用:选择性电吸附用于海水中硼的去除和回收
  • 批准号:
    2001219
  • 财政年份:
    2020
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Standard Grant
SusChEM: Beyond Thermal Separations: Development of Ultra High Pressure Reverse Osmosis Membranes for Energy Efficient Desalination of Hypersaline Brines
SusChEM:超越热分离:开发超高压反渗透膜,用于高盐卤水的节能脱盐
  • 批准号:
    1701658
  • 财政年份:
    2017
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Standard Grant
SusChEM: Development of Next-Generation, Ultra-Selective Aquaporin-Based Membranes for Sustainable Water Purification
SusChEM:开发下一代超选择性水通道蛋白膜,用于可持续水净化
  • 批准号:
    1437630
  • 财政年份:
    2014
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Standard Grant
Engineered Osmosis for Sustainable Production of Water and Energy: Development of High Performance Micromolded Membranes
用于水和能源可持续生产的工程渗透:高性能微模压膜的开发
  • 批准号:
    1232619
  • 财政年份:
    2012
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant
Carbon Nanotubes in Soils: Transport, Filtration, and Impact on Soil Microbial Community
土壤中的碳纳米管:运输、过滤以及对土壤微生物群落的影响
  • 批准号:
    0828795
  • 财政年份:
    2008
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant
Aggregation and Deposition Behavior of Carbon Nanotubes in Aquatic Environments
碳纳米管在水生环境中的聚集和沉积行为
  • 批准号:
    0646247
  • 财政年份:
    2006
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Fullerene Aggregation in Aquatic Systems
合作研究:水生系统中的富勒烯聚集
  • 批准号:
    0504258
  • 财政年份:
    2005
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant
Development of Screening and Modeling Tools for Colloid-Facilitated Transport of Contaminants in the Subsurface
开发地下胶体促进污染物传输的筛选和建模工具
  • 批准号:
    0228911
  • 财政年份:
    2003
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant
Mechanisms of Concentration Polarization and Cake Formation in Crossflow Membrane Filtration of Aqueous Colloidal Particles
水性胶体颗粒错流膜过滤中浓度极化和滤饼形成机制
  • 批准号:
    0114527
  • 财政年份:
    2001
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant
Colloid Release from Geochemically Heterogeneous Porous Media Surfaces
地球化学非均质多孔介质表面的胶体释放
  • 批准号:
    9996240
  • 财政年份:
    1999
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 41.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了