Enabling Confident Burst Gravitational Wave Detections with LIGO Data Quality Investigations

通过 LIGO 数据质量调查实现可靠的爆发引力波检测

基本信息

  • 批准号:
    2110157
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

LIGO’s first direct detection of a gravitational wave has allowed humans to make paradigm-shifting observations of a binary black hole system. Since then, there have been tens of additional gravitational wave detections and all have been from the same source class: binary coalescences. Much has been learned about our Universe from these observations, but additional physical phenomena will be explored through observations of new source classes such as burst gravitational waves. Bursts are a class of gravitational waves that originate from sources that can’t be modeled confidently or are unanticipated. Because of this, little is known about them, yet they hold the potential to lead to new discoveries about our Universe. The research conducted in this award will enable confident burst gravitational wave detections by reducing the impact of glitches in the search for burst gravitational waves with LIGO. This award focuses on training undergraduate students to significantly contribute to this research, formally instructing them in the responsible conduct of research, and communicating their work to both professional scientists at professional meetings and the public through a partnership with the nearby American Helicopter Museum and Education Center (AHMEC). This award also includes tuition support for at least 9 disadvantaged girls and young women (3 each year) to participate in the Girls in Science and Technology (GIST) program run by the AHMEC. The research proposed will increase the confidence in candidate detections of burst gravitational waves by decreasing the impact of transient data artifacts (glitches) on their search algorithms. Searches for burst gravitational waves cannot make assumptions about the waveforms they seek other than they are transient and uncorrelated with the ambient detector noise. Because of that, burst search algorithms are designed to detect statistical excesses in the detector output and are particularly susceptible to the presence of glitches originating from the instrument or its environment. An accidental trigger is generated when the burst search algorithm identifies a glitch as a potential detection candidate. By conducting careful studies on the accidental trigger distribution, glitches with the most impact on the burst searches can be mitigated through their direct removal (veto) from searches. This award will involve the development of vetoes for burst searches, investigations into vetoes that reduce the significance of candidate events based on the confidence that a glitch is present (instead of simply excluding the time), automation of applying results from existing veto tools to burst searches, measurement of the detectable range for a burst search based on the current performance of the search, and facilitating coordination between relevant working groups. This will result in a lower false alarm probability and higher confidence of candidate detections, improved sensitivity of the burst gravitational wave searches, and increased observations for the growing fields of gravitational wave astronomy and multi-messenger astronomy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
LIGO对引力波的首次直接探测使人类能够对双黑洞系统进行范式转移的观测。 从那时起,又有数十个额外的引力波探测,而且都来自同一个源类:双星合并。从这些观测中,我们已经对我们的宇宙有了很多了解,但是通过对新的源类(如爆发引力波)的观测,我们将探索更多的物理现象。 爆发是一类引力波,其起源于无法自信地建模或无法预料的来源。 正因为如此,我们对它们知之甚少,但它们有可能导致我们宇宙的新发现。 在这个奖项中进行的研究将通过减少LIGO寻找爆发引力波时的故障影响,使人们能够有信心地探测爆发引力波。 该奖项的重点是培训本科生,为这项研究做出重大贡献,正式指导他们负责任地进行研究,并通过与附近的美国直升机博物馆和教育中心(AHMEC)的合作伙伴关系,将他们的工作传达给专业会议上的专业科学家和公众。 该奖项还包括至少9名弱势女孩和年轻妇女(每年3名)参加AHMEC运行的女孩科学和技术(GIST)计划的学费支持。拟议的研究将通过减少瞬态数据伪影(毛刺)对搜索算法的影响来增加对爆发引力波候选探测的信心。 爆发引力波的探测器不能对它们寻找的波形做出假设,除非它们是瞬态的,与周围的探测器噪声无关。 因此,突发搜索算法被设计为检测检测器输出中的统计过量,并且特别容易受到源自仪器或其环境的毛刺的存在的影响。 当突发搜索算法将毛刺识别为潜在检测候选时,生成意外触发。 通过对意外触发分布进行仔细研究,可以通过从搜索中直接删除(否决)来减轻对突发搜索影响最大的毛刺。 该奖项将涉及开发突发搜索的否决权,调查否决权,根据故障存在的信心降低候选事件的重要性(而不是简单地排除时间),将来自现有否决工具的结果应用于突发搜索的自动化,基于搜索的当前性能测量突发搜索的可检测范围,并促进相关工作组之间的协调。 这将导致更低的虚警概率和更高的候选探测置信度,提高爆发引力波搜索的灵敏度,并增加对引力波天文学和多信使天文学日益增长的领域的观测。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amber Stuver其他文献

Amber Stuver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amber Stuver', 18)}}的其他基金

REU Site: Astrophysics and Condensed Matter Physics at Villanova University
REU 网站:维拉诺瓦大学天体物理学和凝聚态物理学
  • 批准号:
    1950782
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

University of Surrey (The) and Cycle Confident Limited KTP 23_24 R1
萨里大学 (The) 和 Cycle Confident Limited KTP 23_24 R1
  • 批准号:
    10069659
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Knowledge Transfer Partnership
COnfident DEcisions
自信的决定
  • 批准号:
    EP/Y03600X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
TransformUs Higher Ed: Developing confident, 'classroom-ready' graduates
TransformUs 高等教育:培养自信、“为课堂做好准备”的毕业生
  • 批准号:
    DE240100452
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Cost-Efficient and Confident Sampling for Modern Scientific Discovery
协作研究:现代科学发现的成本高效且可靠的采样
  • 批准号:
    2316012
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Cost-Efficient and Confident Sampling for Modern Scientific Discovery
协作研究:现代科学发现的成本高效且可靠的采样
  • 批准号:
    2316011
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Developing Confident and Capable Future Digital Citizens: A Sociotechnical Analysis of the role of smartphones in "Bring Your Own Device programs" in
培养自信、有能力的未来数字公民:智能手机在“自带设备计划”中的作用的社会技术分析
  • 批准号:
    2603878
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
BECOCO. Be confident.
贝科科。
  • 批准号:
    102917
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Collaborative R&D
User-centred development of an eHealth intervention to support infant feeding choice and confident and safe breastfeeding or formula feeding
以用户为中心开发电子健康干预措施,以支持婴儿喂养选择以及自信和安全的母乳喂养或配方奶喂养
  • 批准号:
    MR/M026418/1
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Confident Learners Development
自信的学习者发展
  • 批准号:
    492719-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Self-Reflexive/Self-Confident Narratives: Textuality and Social Relevance in Contemporary US-American Culture
自我反思/自信的叙事:当代美国文化中的文本性和社会相关性
  • 批准号:
    222302976
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了