RUI: Microwave to Optical Frequency Conversion Through Six-wave Mixing

RUI:通过六波混频实现微波到光频率转换

基本信息

  • 批准号:
    2110357
  • 负责人:
  • 金额:
    $ 24.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

General audience abstract:Quantum computation and optical communication require coherent light sources over a wide range of frequencies. The ability to convert between the “telecom” wavelengths used in optical fiber networks and those used for atomic systems in quantum computation is an important part of furthering communications technology, and would allow more effective information sharing throughout society. This work focuses on the fundamental quantitative interactions between atoms and light, and how these interactions can be used to generate coherent sources at novel wavelengths. Atoms in highly energetic quantum states have been shown to be extremely sensitive to microwaves, providing the impetus for their use in microwave to optical frequency conversion. Many promising quantum computation schemes use microwave transitions to control quantum states, while optical fiber technology makes use of high transmission in the infrared. As a result, this frequency conversion could be an essential part of coupling quantum computation systems to telecom systems. Additionally, as a Research in Undergraduate Institutions project, this work will have a significant effect on the further development of the experimental physics workforce, helping to prepare and motivate undergraduate students for careers in science by developing their skills in experimental technique, data analysis, computation, and scientific communication.Technical audience abstract:Using four lasers which are readily attainable, hot rubidium atoms can be used to generate a coherent infrared source dependent on the application of microwaves or vice-versa. The process makes use of rubidium atoms excited to Rydberg levels with n50, such that transitions between nearby states are resonant with microwave frequencies. The primary objective of this work is to demonstrate the feasibility of using six-wave mixing in hot rubidium atoms as a microwave-infrared frequency conversion method. Through the simultaneous application of multiple lasers connecting atomic states in a process called wave mixing, new directional and coherent light sources, both optical and microwave, will be produced and the process of their generation optimized. Power and frequency characteristics of their output will be explored as a function of the power, polarization and frequency of the input sources, as well as the Rydberg state used. This research will provide analysis of wave mixing in rubidium atoms, which has the potential to greatly advance the scientific community's understanding of six-wave mixing. While four-wave mixing has been extensively investigated and used, higher wave-mixing remains relatively unexplored. The use of higher wave-mixing allows the exploration of novel wavelengths for coherent light while still using common and convenient atomic systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要:量子计算和光通信需要在宽频率范围内的相干光源。 在光纤网络中使用的“电信”波长与量子计算中用于原子系统的波长之间进行转换的能力是进一步发展通信技术的重要组成部分,并将使整个社会更有效地共享信息。 这项工作的重点是原子和光之间的基本定量相互作用,以及如何利用这些相互作用来产生新波长的相干光源。 处于高能量子态的原子已被证明对微波极其敏感,这为它们在微波到光学频率转换中的应用提供了动力。 许多有前途的量子计算方案使用微波跃迁来控制量子态,而光纤技术则利用红外线的高传输。 因此,这种频率转换可能是将量子计算系统耦合到电信系统的重要组成部分。 此外,作为本科院校的研究项目,这项工作将对实验物理工作人员的进一步发展产生重大影响,通过培养他们在实验技术,数据分析,计算和科学交流方面的技能,帮助准备和激励本科生从事科学职业。技术观众摘要:使用四个容易获得的激光器,热铷原子可以用来产生依赖于微波应用的相干红外源,反之亦然。 该过程利用铷原子被激发到具有n50的里德伯能级,使得附近状态之间的跃迁与微波频率共振。 本工作的主要目的是证明利用热铷原子中的六波混频作为微波-红外频率转换方法的可行性。 通过在一个称为波混合的过程中同时应用连接原子状态的多个激光器,将产生新的定向和相干光源,包括光学和微波,并优化其生成过程。 其输出的功率和频率特性将作为输入源的功率、极化和频率以及所使用的里德伯态的函数进行探索。 这项研究将提供铷原子中波混合的分析,这有可能大大推进科学界对六波混合的理解。 虽然四波混频已经被广泛研究和使用,但更高的波混频仍然相对未被探索。 使用更高的波混合允许探索新的波长的相干光,同时仍然使用常见的和方便的原子系统。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A low-cost confocal microscope for the undergraduate lab
适用于本科生实验室的低成本共焦显微镜
  • DOI:
    10.1119/5.0128277
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Reguilon, A.;Bethard, W.;Brekke, E.
  • 通讯作者:
    Brekke, E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Brekke其他文献

Erik Brekke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ExpandQISE: Track 2: Expanding Quantum Research and Education at Winston-Salem State University with Research on Hybrid Microwave-Optical Quantum Devices
ExpandQISE:轨道 2:通过混合微波光量子器件的研究扩大温斯顿塞勒姆州立大学的量子研究和教育
  • 批准号:
    2329017
  • 财政年份:
    2023
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Continuing Grant
Highly Efficient Magnon-Mediated Microwave-to-Optical Converter Using a Disk-shaped Ferromagnetic Insulator
使用盘形铁磁绝缘体的高效磁振子介导微波光转换器
  • 批准号:
    23KJ1209
  • 财政年份:
    2023
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Microwave to optical quantum transducer using mechanical resonators
使用机械谐振器的微波到光学量子传感器
  • 批准号:
    576636-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Alliance Grants
Microwave to Optical quantum transduction.
微波到光量子转导。
  • 批准号:
    2742314
  • 财政年份:
    2022
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Studentship
Photonic-phononic integrated circuits for (quantum) microwave to optical signal transduction
用于(量子)微波到光信号转换的光子-声子集成电路
  • 批准号:
    2765135
  • 财政年份:
    2022
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Studentship
Efficiently converting between optical and microwave photons using nano-photonics
使用纳米光子学在光学和微波光子之间进行高效转换
  • 批准号:
    580744-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Alliance Grants
Silicon photonics: enabling optical and microwave signal processing for broadband communications beyond the next decade
硅光子学:为未来十年的宽带通信提供光学和微波信号处理
  • 批准号:
    RGPIN-2015-04386
  • 财政年份:
    2022
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Discovery Grants Program - Individual
Photonic sources of pristine optical and microwave carriers
原始光学和微波载体的光子源
  • 批准号:
    RGPIN-2020-04494
  • 财政年份:
    2022
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Discovery Grants Program - Individual
Optical measurement of tissue conductivity in microwave range with cell-level resolution
微波范围内组织电导率的光学测量,具有细胞级分辨率
  • 批准号:
    22K14299
  • 财政年份:
    2022
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Silicon photonics: enabling optical and microwave signal processing for broadband communications beyond the next decade
硅光子学:为未来十年的宽带通信提供光学和微波信号处理
  • 批准号:
    RGPIN-2015-04386
  • 财政年份:
    2021
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了