Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations

全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法

基本信息

  • 批准号:
    1620168
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Fully nonlinear second order elliptic partial differential equations (PDEs) arise from many scientific and engineering applications such as differential geometry, antenna design, astrophysics, geophysical fluid dynamics, image processing, mathematical finance, optimal mass transport, and stochastic optimal control. These PDEs are among most difficult PDEs to study analytically and to solve numerically. Two major and distinct classes of fully nonlinear second order PDEs often arise from applications, namely, the Monge-Ampere (MA) type PDEs and the Hamilton-Jacobi-Bellman (HJB) type PDEs. They have very different structures and arise from distinct application fields. However, a recent discovery by the PI's research team finds that these two classes of PDEs are intimately related. This finding opens a door for utilizing and adapting the relatively wealthy numerical methods and techniques for HJB-type PDEs to solve MA-type PDEs and enables a possibility for bridging the gap on numerical methods between those two major classes of fully nonlinear PDEs. It also provides a deeper understanding about the strength and weakness of the existing numerical methods for both classes of fully nonlinear PDEs. The education component of this research project is to engage and train two graduate students in developing necessary applied and computational mathematics knowledge and skills so that they can pursue a successful career in either academia or industry in the near future.In this project, the PI will develop efficient numerical methods for both MA-type and HJB-type fully nonlinear PDEs. The PI will achieve the following goals in this project: (1) to establish equivalent (in the viscosity sense) HJB-reformulations for general MA-type equations, in particular, for the MA-type PDEs from optimal mass transport and for parabolic MA-type PDEs; (2) to systematically develop a high order semi-Lagrangian methodology and framework, which take the advantages of wide-stencil finite difference methods and unstructured triangular finite element and discontinuous Galerkin (DG) methods, for HJB-type and MA-type PDEs. (3) to develop convergent narrow-stencil finite difference, finite element and DG methods and framework for HJB-type and MA-type fully nonlinear PDEs based on some new and generalized numerical monotonicity concept; (4) to incorporate uncertainty into fully nonlinear PDE models by considering and developing efficient numerical methods for stochastic MA-type and HJB-type PDEs; (5) to apply the anticipated numerical methods to fully nonlinear PDE application problems arising from optimal mass transport, semigeostrophic flow, and stochastic optimal control from mathematical finance. By addressing the challenging numerical PDE problems and establishing fundamental numerical fully nonlinear PDE methodologies and theories, this project will have a significant theoretical and practical impact to the emerging field of numerical fully nonlinear PDEs and to computational and applied mathematics at large. The new numerical techniques can be used to solve various fully nonlinear PDE problems arising from differential geometry, antenna design, astrophysics, geophysical fluid dynamics, image processing, mathematical finance, optimal mass transport, and stochastic optimal control.
完全非线性的二阶椭圆型偏微分方程组(PDE)广泛地应用于许多科学和工程领域,如微分几何、天线设计、天体物理学、地球物理流体动力学、图像处理、数学金融、最优质量传输和随机最优控制等。这些偏微分方程组是最难解析研究和数值求解的偏微分方程组之一。两类主要且截然不同的完全非线性二阶偏微分方程组经常出现在应用中,即Monge-Ampere(MA)型和Hamilton-Jacobi-Bellman(HJB)型偏微分方程组。它们具有非常不同的结构,来自不同的应用领域。然而,PI的研究团队最近的一项发现发现,这两类PDE是密切相关的。这一发现为利用和采用相对丰富的HJB型偏微分方程组的数值方法和技巧来求解MA型偏微分方程组打开了大门,并为弥合这两大类完全非线性偏微分方程组在数值方法上的差距提供了可能。同时也加深了对这两类完全非线性偏微分方程组现有数值方法的优缺点的理解。这项研究项目的教育部分是让两名研究生发展必要的应用和计算数学知识和技能,以便他们在不久的将来能够在学术界或工业界获得成功的职业生涯。在这个项目中,PI将为MA类型和HJB类型的完全非线性偏微分方程组开发有效的数值方法。PI将在本项目中实现以下目标:(1)建立一般MA类型方程的等价(在粘性意义上)HJB-重构式,特别是对于来自最优质量输运的MA类型偏微分方程组和抛物型MA类型偏微分方程组;(2)系统地发展高阶半拉格朗日方法和框架,该方法和框架利用宽模板有限差分方法和非结构三角有限元和间断Galerkin(DG)方法的优点,用于HJB类型和MA类型的偏微分方程组。(3)基于一些新的和广义的数值单调性概念,发展收敛的窄模板有限差分、有限元和DG方法和框架,用于HJB型和MA型完全非线性偏微分方程组;(4)通过考虑和发展随机MA型和HJB型偏微分方程组的有效数值方法,将不确定性融入到完全非线性偏微分方程组模型中;(5)将预期的数值方法应用于从数学金融学的最优质量传输、半地转流和随机最优控制中产生的完全非线性偏微分方程应用问题。通过解决具有挑战性的数值偏微分方程组问题,建立基本的数值完全非线性偏微分方程组方法和理论,该项目将对新兴的数值完全非线性偏微分方程组领域以及整个计算和应用数学产生重大的理论和实践影响。新的数值方法可用于求解各种完全非线性的偏微分方程组问题,这些问题涉及到微分几何、天线设计、天体物理学、地球物理流体动力学、图像处理、数学金融、最优质量传输和随机最优控制等领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaobing Feng其他文献

DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing
DNNTune:移动云计算 DNN 模型的自动基准测试
Associations of urinary 1,3-butadiene metabolite with glucose homeostasis, prediabetes, and diabetes in the US general population: Role of alkaline phosphatase.
美国普通人群尿 1,3-丁二烯代谢物与葡萄糖稳态、糖尿病前期和糖尿病的关联:碱性磷酸酶的作用。
  • DOI:
    10.1016/j.envres.2023.115355
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Ruyi Liang;Xiaobing Feng;Da Shi;Linling Yu;Meng Yang;Min Zhou;Yongfang Zhang;Bin Wang;Weihong Chen
  • 通讯作者:
    Weihong Chen
Depth Camera Based Fluid Reconstruction and its Solid-fluid Interaction
基于深度相机的流体重建及其固液相互作用
CloudRaid: Detecting Distributed Concurrency Bugs via Log Mining and Enhancement
CloudRaid:通过日志挖掘和增强检测分布式并发错误
  • DOI:
    10.1109/tse.2020.2999364
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Jie Lu;Feng Li;Chen Liu;Lian Li;Xiaobing Feng;Jingling Xue
  • 通讯作者:
    Jingling Xue
Cascade Wide Activation Multi-Scale Networks for Single Image Super-Resolution
用于单图像超分辨率的级联宽激活多尺度网络

Xiaobing Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaobing Feng', 18)}}的其他基金

Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
  • 批准号:
    2012414
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Novel Discontinuous Galerkin Finite Element Methods for Second Order Fully Nonlinear Equations and High Frequency Wave Equations
二阶完全非线性方程和高频波动方程的新型间断伽辽金有限元方法
  • 批准号:
    1318486
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Conference: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations
会议:偏微分方程不连续伽辽金有限元方法的最新进展
  • 批准号:
    1203237
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications
全非线性二阶演化方程的数值方法和算法及其应用
  • 批准号:
    1016173
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Numerical Methods and Algorithms for Second Order Fully Nonlinear Partial Differential Equations
二阶完全非线性偏微分方程的数值方法和算法
  • 批准号:
    0710831
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
International Workshop on Computational Methods in Geosciences
地球科学计算方法国际研讨会
  • 批准号:
    0715713
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Computational Challenges in Geometrical Flows: Numerical Methods and Analysis, Algorithmic Development and Software Engineering
几何流中的计算挑战:数值方法和分析、算法开发和软件工程
  • 批准号:
    0410266
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
The Barrett Lectures May, 2001 "New Directions and Developments in Computational Mathematics
巴雷特讲座,2001 年 5 月“计算数学的新方向和发展
  • 批准号:
    0107159
  • 财政年份:
    2001
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

超声行波微流体驱动机理的试验研究
  • 批准号:
    51075243
  • 批准年份:
    2010
  • 资助金额:
    39.0 万元
  • 项目类别:
    面上项目
关于图像处理模型的目标函数构造及其数值方法研究
  • 批准号:
    11071228
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
  • 批准号:
    40972154
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
  • 批准号:
    10872219
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
  • 批准号:
    21H03452
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel Methods for Numerical Simulation of Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值模拟的新方法
  • 批准号:
    2110407
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Novel Decompositions and Fast Numerical Methods for Peridynamics
近场动力学的新颖分解和快速数值方法
  • 批准号:
    2108588
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Novel mathematics and numerical methods for ferromagnetic problems
铁磁问题的新颖数学和数值方法
  • 批准号:
    DP190101197
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Projects
Novel physical and numerical methods for simulating water and heat transfer in land surface models.
用于模拟地表模型中水和热传递的新颖物理和数值方法。
  • 批准号:
    2202955
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Novel physical and numerical methods for simulating water, heat and gas transfer in land surface models, with focus on UKMO JULES model
用于模拟地表模型中水、热和气体传递的新颖物理和数值方法,重点是 UKMO JULES 模型
  • 批准号:
    NE/R008469/1
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Training Grant
Novel numerical methods for emerging additive manufacturing technology of Organic-Light Emitting Diodes O-LED
有机发光二极管 O-LED 新兴增材制造技术的新颖数值方法
  • 批准号:
    1972026
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
The combination of numerical methods from a novel linear transformation model and laser diagnostic methods for the characterisation of laminar flames
将新型线性变换模型的数值方法与激光诊断方法相结合来表征层流火焰
  • 批准号:
    397116102
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Fellowships
Novel Numerical Methods for Additive Manufacturing 3D Printing of Dissimilar Materials
异种材料增材制造 3D 打印的新颖数值方法
  • 批准号:
    1823167
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了