Numerical Methods in Noncommutative Matrix Analysis
非交换矩阵分析中的数值方法
基本信息
- 批准号:2110398
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will develop algorithms that are useful for modern physics and quantum information. In particular, the methods developed will be important for modeling topological lasers which are applicable to photonic chips and quantum circuitry. These applications pose challenges to the computational science and in particular to the linear algebra algorithms so they can work with joint measurement in multivariable setting and incommensurate observables recognizing the theoretical limits that exist. The project will consider a variety of multivariable linear algebra algorithms, mainly those filling an immediate need in computational quantum physics and quantum information, but also those that can increase the speed and accuracy of computer shape analysis. The project will involve students and provide training in interdisciplinary projects. This project will develop numerical methods for collections of matrices and operators arising in quantum physics and image analysis. This includes algorithms that work with finite-dimensional approximations to infinite-dimensional systems, leading to better computer modeling of quasicrystals, amorphous systems and periodic systems with defects. Methods and algorithms to be developed will be useful in the study of topological insulators, including periodically-driven systems. The project will study various forms of spectra, including variations of the local density of states, a standard tool in many areas of physics and chemistry. The anticipated work on K-theory is expected to produce new and better tools that can be used by theoretical physicists in numerical studies. At the core of these methods is the study of joint approximate eigenvectors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发对现代物理学和量子信息有用的算法。特别是,开发的方法将是重要的建模拓扑激光器,适用于光子芯片和量子电路。这些应用对计算科学,特别是线性代数算法提出了挑战,因此它们可以在多变量设置和不相称的观测量中进行联合测量,从而识别存在的理论极限。 该项目将考虑各种多变量线性代数算法,主要是那些满足计算量子物理和量子信息迫切需要的算法,以及那些可以提高计算机形状分析速度和准确性的算法。该项目将让学生参与,并提供跨学科项目的培训。该项目将为量子物理和图像分析中出现的矩阵和算子的集合开发数值方法。 这包括与有限维近似无限维系统工作的算法,从而更好地计算机模拟准晶体,无定形系统和周期性系统的缺陷。 待开发的方法和算法将有助于拓扑绝缘体的研究,包括磁驱动系统。该项目将研究各种形式的光谱,包括局域态密度的变化,这是物理和化学许多领域的标准工具。 对K理论的预期工作预计将产生新的和更好的工具,可供理论物理学家在数值研究中使用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local invariants identify topology in metals and gapless systems
- DOI:10.1103/physrevb.106.064109
- 发表时间:2022-08-30
- 期刊:
- 影响因子:3.7
- 作者:Cerjan, Alexander;Loring, Terry A.
- 通讯作者:Loring, Terry A.
Even spheres as joint spectra of matrix models
偶数球体作为矩阵模型的联合谱
- DOI:10.1016/j.jmaa.2023.127892
- 发表时间:2024
- 期刊:
- 影响因子:1.3
- 作者:Cerjan, Alexander;Loring, Terry A.
- 通讯作者:Loring, Terry A.
Computing Truncated Joint Approximate Eigenbases for Model Order Reduction
计算截断的联合近似特征库以减少模型阶数
- DOI:10.11128/arep.17.a17209
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Loring, Terry;Vides, Fredy
- 通讯作者:Vides, Fredy
An operator-based approach to topological photonics
- DOI:10.1515/nanoph-2022-0547
- 发表时间:2022-09
- 期刊:
- 影响因子:7.5
- 作者:A. Cerjan;T. Loring
- 通讯作者:A. Cerjan;T. Loring
Quadratic pseudospectrum for identifying localized states
- DOI:10.1063/5.0098336
- 发表时间:2023-02-01
- 期刊:
- 影响因子:1.3
- 作者:Cerjan, Alexander;Loring, Terry A.;Vides, Fredy
- 通讯作者:Vides, Fredy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Terry Loring其他文献
Local topology for periodic Hamiltonians and fuzzy tori
周期性哈密顿量和模糊环面的局部拓扑
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nora Doll;Terry Loring;H. Schulz - 通讯作者:
H. Schulz
Terry Loring的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Terry Loring', 18)}}的其他基金
Emergent Topology and K-Theory of Matrix Models
矩阵模型的涌现拓扑和K理论
- 批准号:
1700102 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Stable Relations and their Loci in Operator Algebra Variables
算子代数变量中的稳定关系及其轨迹
- 批准号:
9970799 - 财政年份:1999
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Stable Relations and Their Loci in Operator Variables
数学科学:算子变量中的稳定关系及其轨迹
- 批准号:
9531841 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Algebras
数学科学:算子代数
- 批准号:
9215024 - 财政年份:1993
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
U.S.-Brazil Cooperative Research: Operator Algebras
美国-巴西合作研究:算子代数
- 批准号:
9016378 - 财政年份:1991
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9007347 - 财政年份:1990
- 资助金额:
$ 12万 - 项目类别:
Fellowship Award
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Breakthrough methods for noncommutative calculus
非交换微积分的突破性方法
- 批准号:
FL170100052 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Australian Laureate Fellowships
Dualities and Correspondences in Algebraic Geometry via Derived Categories and Noncommutative Methods
通过派生范畴和非交换方法的代数几何中的对偶性和对应性
- 批准号:
EP/N021649/2 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Fellowship
Dualities and Correspondences in Algebraic Geometry via Derived Categories and Noncommutative Methods
通过派生范畴和非交换方法的代数几何中的对偶性和对应性
- 批准号:
EP/N021649/1 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Fellowship
Nonstandard methods for noncommutative algebra
非交换代数的非标准方法
- 批准号:
488568-2015 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
University Undergraduate Student Research Awards
Nonstandard methods for noncommutative algebra
非交换代数的非标准方法
- 批准号:
491087-2015 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
University Undergraduate Student Research Awards
New methods of study in noncommutative algebraic geometry using representation theory of algebras
利用代数表示论研究非交换代数几何的新方法
- 批准号:
25400037 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Noncommutative and Heegaard Floer Methods in Low-Dimensional Topology
低维拓扑中的非交换和 Heegaard Florer 方法
- 批准号:
1309070 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Exploring Information Geometrical Methods in Noncommutative Probability Theory
探索非交换概率论中的信息几何方法
- 批准号:
22340019 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum information geometrical methods in noncommutative statistics
非交换统计中的量子信息几何方法
- 批准号:
18340028 - 财政年份:2006
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Methods of Hankel and Toeplitz Operators in Noncommutative Analysis
非交换分析中Hankel和Toeplitz算子的方法
- 批准号:
0200712 - 财政年份:2002
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant