Stable Relations and their Loci in Operator Algebra Variables

算子代数变量中的稳定关系及其轨迹

基本信息

  • 批准号:
    9970799
  • 负责人:
  • 金额:
    $ 6.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-01 至 2002-07-31
  • 项目状态:
    已结题

项目摘要

AbstractLoringThe abstract properties of curves in a unit cube defined by polynomials are well understood. In particular, points that approximately are zeros of the polynomials are close to exact zeros. The same set of polynomials can become "unstable" when applied to matrices (and even more so when applied to operator algebra variables). That is, there can be contractive matrices that, when substituted into the polynomials give results near zero, and yet there is no actual matrix-root close to the approximate solution. We call such approximate solutions phantom solutions. These phantom approximate solutions can be misleading in the context of computer models. There is a notion of stability for a relation that does not require the relation to be polynomial. Much of this project will study relations that remain stable when applied to operator algebra variables. These are rare, but tend to be related to interesting invariants of operator algebras. Stability results limited to the realm of matrices will also be explored, with the hope of finding some applications to numerical analysis.Polynomial relations have stability properties that we rely on every day. Take the example of a laser cutting some flat material, where the cut-points are determined as the zero-set of a set of equations. If the x and y coordinates of the laser come close to satisfying these equations, we go ahead and fire the laser, for we are sure that close to this approximate solution there is an exact solution, and thus we are cutting close to where we should. In computer modeling, one's model is often based on more that just numerical variables. In particular, much of numerical analysis involves matrix-valued computations. It turns out that equations that are stable for ordinary values become unstable for matrix values. That is, there can be approximate solutions to equations that are not close to any true solutions. We call such things phantom approximate solutions. This project will study these phantom approximate solutions and ways to detect and avoid them.
摘要Loring多项式定义的单位立方体中曲线的抽象性质是很好理解的。 特别地,近似为多项式的零的点接近于精确的零。 当应用于矩阵时,同一组多项式可能变得“不稳定”(当应用于算子代数变量时甚至更不稳定)。 也就是说,可以有压缩矩阵,当代入多项式时给出接近零的结果,但没有接近近似解的实际矩阵根。 我们称这种近似解为幻影解。 这些虚幻的近似解在计算机模型的上下文中可能会产生误导。 有一个稳定的关系,不需要关系是多项式的概念。 本专题的大部分内容将研究应用于算子代数变量时保持稳定的关系。 这些是罕见的,但往往与有趣的算子代数不变量。 稳定性结果限于领域的矩阵也将探讨,希望找到一些应用程序的数值分析。多项式关系的稳定性,我们每天都依赖。 以激光切割一些平面材料为例,其中切割点被确定为一组方程的零集。 如果激光的x和y坐标接近满足这些方程,我们就继续发射激光,因为我们确信在接近这个近似解的地方有一个精确解,因此我们正在接近我们应该切割的地方。 在计算机建模中,一个人的模型往往是基于更多的只是数字变量。 特别是,许多数值分析涉及矩阵值计算。 结果表明,对于普通值稳定的方程对于矩阵值变得不稳定。 也就是说,方程可能有近似解,但不接近任何真解。 我们称之为幻影近似解。 本项目将研究这些幻影近似解以及检测和避免它们的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Terry Loring其他文献

Local topology for periodic Hamiltonians and fuzzy tori
周期性哈密顿量和模糊环面的局部拓扑
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nora Doll;Terry Loring;H. Schulz
  • 通讯作者:
    H. Schulz

Terry Loring的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Terry Loring', 18)}}的其他基金

Numerical Methods in Noncommutative Matrix Analysis
非交换矩阵分析中的数值方法
  • 批准号:
    2110398
  • 财政年份:
    2021
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Standard Grant
Emergent Topology and K-Theory of Matrix Models
矩阵模型的涌现拓扑和K理论
  • 批准号:
    1700102
  • 财政年份:
    2017
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Standard Grant
West Coast Operator Algebra Seminar
西海岸算子代数研讨会
  • 批准号:
    1138747
  • 财政年份:
    2011
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stable Relations and Their Loci in Operator Variables
数学科学:算子变量中的稳定关系及其轨迹
  • 批准号:
    9531841
  • 财政年份:
    1996
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Operator Algebras
数学科学:算子代数
  • 批准号:
    9215024
  • 财政年份:
    1993
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Continuing Grant
U.S.-Brazil Cooperative Research: Operator Algebras
美国-巴西合作研究:算子代数
  • 批准号:
    9016378
  • 财政年份:
    1991
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9007347
  • 财政年份:
    1990
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Fellowship Award

相似海外基金

Rebel-civilian relations and their effects on rebel-state bargaining dynamics
叛军与平民的关系及其对叛军与国家讨价还价动态的影响
  • 批准号:
    2863893
  • 财政年份:
    2023
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Studentship
Examining individual differences in large scale brain networks in individuals with OCD and their relations to heterogeneity of obsessive compulsive symptoms.
检查强迫症患者大规模大脑网络的个体差异及其与强迫症状异质性的关系。
  • 批准号:
    10624934
  • 财政年份:
    2022
  • 资助金额:
    $ 6.77万
  • 项目类别:
Zeros of zeta functions and L-functions, and their relations to Goldbach's problem
zeta 函数和 L 函数的零点及其与哥德巴赫问题的关系
  • 批准号:
    22K13895
  • 财政年份:
    2022
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
  • 批准号:
    RGPIN-2018-04534
  • 财政年份:
    2022
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Discovery Grants Program - Individual
Eco-evolutionary interactions between parasites and their hosts: the importance of aggregation to understanding patterns of coinfection and contaminant-parasite relations
寄生虫与其宿主之间的生态进化相互作用:聚集对于理解共感染模式和污染物-寄生虫关系的重要性
  • 批准号:
    546565-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Examining individual differences in large scale brain networks in individuals with OCD and their relations to heterogeneity of obsessive compulsive symptoms.
检查强迫症患者大规模大脑网络的个体差异及其与强迫症状异质性的关系。
  • 批准号:
    10527692
  • 财政年份:
    2022
  • 资助金额:
    $ 6.77万
  • 项目类别:
Eco-evolutionary interactions between parasites and their hosts: the importance of aggregation to understanding patterns of coinfection and contaminant-parasite relations
寄生虫与其宿主之间的生态进化相互作用:聚集对于理解共感染模式和污染物-寄生虫关系的重要性
  • 批准号:
    546565-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hybrid nanomaterials and their structure-property-performance relations for catalysis, green energy and nanoelectronics applications
杂化纳米材料及其在催化、绿色能源和纳米电子学应用中的结构-性能-性能关系
  • 批准号:
    RGPIN-2017-04183
  • 财政年份:
    2021
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
  • 批准号:
    RGPIN-2018-04534
  • 财政年份:
    2021
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Discovery Grants Program - Individual
Strengthening Kinship Relations Through Inclusive Rites of Passage for Indigenous Gender and Sexuality-Diverse Youth and Their Support Systems
通过土著性别和性取向多元化青年及其支持系统的包容性成年仪式加强亲属关系
  • 批准号:
    450160
  • 财政年份:
    2021
  • 资助金额:
    $ 6.77万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了