Novel Discontinuous Galerkin Methods for Deterministic and Stochastic Optimization Problems with Inequality Constraints
具有不等式约束的确定性和随机优化问题的新型间断伽辽金方法
基本信息
- 批准号:2111004
- 负责人:
- 金额:$ 11.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to develop new numerical methods for solving optimization problems that have applications in elasticity theory, fluid filtration in porous media, constrained heating, cancer therapy, shape optimization, and financial mathematics. The computational simulations from this project will provide insights on the understanding of complicated physical models with random perturbations. Another emphasis of this project will be the training of graduate students in numerical methods and their analysis while also training the students in theory. The students will further be trained in the efficient implementation of the computer codes so that they are better prepared for careers in industry.The project is on the design, implementation, and rigorous analysis of a new class of discontinuous Galerkin (DG) methods for variational inequalities and optimal control problems with inequality constraints that are fundamental for the modeling of nonlinear problems arising from applications in materials science, mechanical engineering, shape optimization, and financial science. Furthermore, the underlying problems may involve small parameters and random perturbations such that the complete numerical analyses are more subtle. The formulations of classical DG methods usually require large positive penalty parameters that depend on the shape regularity of the mesh and other unknown constants. The project will design novel DG methods for variational inequalities, optimal control problems with partial differential equations constraints, and related singularly perturbed and stochastically perturbed problems. Another goal of the project is to design robust, reliable, and efficient a posteriori error estimators for the corresponding deterministic and stochastic problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发新的数值方法,用于解决弹性理论,多孔介质中的流体过滤,约束加热,癌症治疗,形状优化和金融数学中的应用。该项目的计算模拟将为理解具有随机扰动的复杂物理模型提供见解。该项目的另一个重点将是培养研究生的数值方法及其分析,同时也培养学生的理论。学生将进一步接受有效实施计算机代码的培训,以便他们为工业职业做好更好的准备。该项目是关于一类新的不连续Galerkin(DG)方法的设计,实施和严格分析,用于变分不等式和不等式约束的最优控制问题,这些问题是材料科学应用中产生的非线性问题建模的基础,机械工程、形状优化和金融科学。此外,潜在的问题可能涉及小参数和随机扰动,使得完整的数值分析更加微妙。经典DG方法的公式通常需要大的正惩罚参数,这取决于网格的形状规则性和其他未知常数。该项目将为变分不等式,偏微分方程约束的最优控制问题以及相关的奇摄动和随机摄动问题设计新的DG方法。该项目的另一个目标是为相应的确定性和随机性问题设计鲁棒、可靠和有效的后验误差估计器。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Zhang其他文献
Electrochemical enhanced oxidative decomposition of chromite ore in highly concentrated KOH solution
高浓KOH溶液中铬铁矿矿石的电化学强化氧化分解
- DOI:
10.1016/j.mineng.2013.12.009 - 发表时间:
2014-03 - 期刊:
- 影响因子:4.8
- 作者:
Yi Zhang;Seyeon Hwang;Nam Soo Kim;Tae Eui Jeong - 通讯作者:
Tae Eui Jeong
Fabrication of visible-light active Fe2O3-GQDs/NF-TiO2 composite film with highly enhanced photoelectrocatalytic performance
具有高度增强光电催化性能的可见光活性Fe2O3-GQDs/NF-TiO2复合薄膜的制备
- DOI:
10.1016/j.apcatb.2016.11.046 - 发表时间:
2017-05 - 期刊:
- 影响因子:22.1
- 作者:
Qi Wang;Naxin Zhu;Engin Liu;Chenlu Zhang;John C. Crittenden;Yi Zhang;Yanqing Cong - 通讯作者:
Yanqing Cong
Convergence of trajectories and optimal buffer sizing for MIMD congestion control
MIMD 拥塞控制的轨迹收敛和最佳缓冲区大小
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:6
- 作者:
Yi Zhang;A. Piunovskiy;U. Ayesta;Konstantin Avrachenkov - 通讯作者:
Konstantin Avrachenkov
Highly-Efficient Doped and Nondoped Organic Light-Emitting Diodes with External Quantum Efficiencies over 20% from a Multifunctional Green Thermally Activated Delayed Fluorescence Emitter
高效%20掺杂%20和%20非掺杂%20有机%20发光%20二极管%20with%20外部%20量子%20效率%20over%2020%%20来自%20a%20多功能%20绿色%20热%20激活%20延迟%20荧光%20发射器
- DOI:
10.1021/acs.jpcc.8b08604 - 发表时间:
2019-01 - 期刊:
- 影响因子:0
- 作者:
Juan Zhao;Xiaojie Chen;Zhan Yang;Tiantian Liu;Zhiyong Yang;Yi Zhang;Jiarui Xu;Zhenguo Chi - 通讯作者:
Zhenguo Chi
Novel compact waveguide filtering twist for CNC machining
用于 CNC 加工的新型紧凑型波导滤波扭曲
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yi Zhang;X. Shang;Jun;Yuewei Guo;Lei Duan;Xiao Lu - 通讯作者:
Xiao Lu
Yi Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Zhang', 18)}}的其他基金
CAREER: Implantable multimodal bioelectronics for high-performance gastrointestinal monitoring and modulation
职业:用于高性能胃肠道监测和调节的植入式多模式生物电子学
- 批准号:
2238273 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Continuing Grant
NSF Student Travel Grant for 2022 ACM Recommender Systems Conference
2022 年 ACM 推荐系统会议 NSF 学生旅行补助金
- 批准号:
2228556 - 财政年份:2022
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
- 批准号:
2031276 - 财政年份:2020
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
- 批准号:
2113736 - 财政年份:2020
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
- 批准号:
2103025 - 财政年份:2020
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
- 批准号:
2037405 - 财政年份:2020
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
CAREER: Understanding Community College Transfer Students' STEM Choice, Performance, Persistence, and STEM Baccalaureate Degree Attainment: A Typological Analysis
职业:了解社区大学转学生的 STEM 选择、表现、坚持和 STEM 学士学位获得情况:类型分析
- 批准号:
1652622 - 财政年份:2017
- 资助金额:
$ 11.49万 - 项目类别:
Continuing Grant
WORKSHOP: Doctoral Symposium at the 2014 Recommender System Conference
WORKSHOP:2014年推荐系统大会博士生研讨会
- 批准号:
1433104 - 财政年份:2014
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
EAGER: Detecting and Tracking Cyber Bullying on the Social Web
EAGER:检测和跟踪社交网络上的网络欺凌
- 批准号:
1144564 - 财政年份:2011
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
CAREER: Future of Search: User, Social Networks and Language
职业:搜索的未来:用户、社交网络和语言
- 批准号:
0953908 - 财政年份:2010
- 资助金额:
$ 11.49万 - 项目类别:
Continuing Grant
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
- 批准号:
2309591 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2404521 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
- 批准号:
2309590 - 财政年份:2023
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Systems with Compact Stencils
用于具有紧凑模板的对流主导系统的龙格-库塔不连续伽辽金方法
- 批准号:
2208391 - 财政年份:2022
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
Analysis of hybridized discontinuous Galerkin methods for the miscible displacement problem
混相驱替问题的混合间断伽辽金法分析
- 批准号:
568008-2022 - 财政年份:2022
- 资助金额:
$ 11.49万 - 项目类别:
Postdoctoral Fellowships
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2208231 - 财政年份:2022
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant
Computational Relativistic Astrophysics via Space-Time Discontinuous Galerkin Finite Element Methods
基于时空不连续伽辽金有限元方法的计算相对论天体物理学
- 批准号:
RGPIN-2017-04581 - 财政年份:2022
- 资助金额:
$ 11.49万 - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2022
- 资助金额:
$ 11.49万 - 项目类别:
Discovery Grants Program - Individual
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2310340 - 财政年份:2022
- 资助金额:
$ 11.49万 - 项目类别:
Standard Grant