Inverse Problems for Nonlinear Partial Differential Equations

非线性偏微分方程的反问题

基本信息

  • 批准号:
    2111020
  • 负责人:
  • 金额:
    $ 21.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project will address three topics in the general area of inverse problems and those are the amount of data needed to recover the desired unknown, the stability of the result in terms of the data measurements, and the existence or not of an algorithm to go from the measured data to the desired unknowns. Each of these will be an essential component of the work for this proposal. The first of these is critical and from a mathematical viewpoint typically the most challenging. Without such a result we have no guarantee that even finding a solution to the mathematical problem allows us to correlate this with the actual physical solution. In each of the works we anticipate this will require the greatest effort and challenges. Answering the stability question will be essential for us to determine: "given a tolerance level between our constructed solution and the actual one, what is the allowed maximal error in the data measurements that will allow us to achieve this." Of course, to carry this out one needs a reconstruction method and each algorithm, even if it provides a solution, may require a different error bound on the data. Thus in some sense the question we have to answer is not only if a computational algorithm can be found, but in what sense is it near to being optimal? This latter question is one where the work of a mathematically strong undergraduate student can be engaged. Mentoring of such students will be an aspect of this work. This project will support 3 undergraduate students each year of the 3 year grant. Specifically, the recovery of the nonlinear terms in nonlinear reaction-diffusion equations and systems of parabolic type is sought; that is, coefficients such as the conductivity or the reaction or interaction terms that depends on the solution itself. An example here is a (spatially or environment variable) rate coefficient in a complex inter-species interaction term that itself has to be determined as is typical in sophisticated epidemic models. Also considered are nonlinear hyperbolic equations occurring in, for example, medical imaging. Nonlinear acoustics has a term that essentially represents the object to be reconstructed and this is coupled to a second term that arises from the nonlinear model and appears as a coefficient in the leading term of the partial differential operator. The simplest model that retains the nonlinear effects is to take this to be the identity operator but a more realistic case is to assume this is more complex and additionally seek its recovery. The damped or attenuated wave equation occurs in many areas of physics and engineering. The usual assumption is the damping mechanism is proportional to velocity so that a time-derivative term is incorporated into the basic equation. It is often been observed in applications such as acoustics, viscoelasticity, structural vibration and seismic wave propagation, that the magnitude of the damping is frequency dependent and obeys a power law behavior. A typical formulation involves operators of nonlocal type and these are usually based on fractional derivatives or fractional powers of differential operators. The aim is to explore these effects with particular emphasis on asking whether the inverse problems are more tractable (that is, in terms of ill-conditioning and convergence of numerical methods) for both types of damping. In all cases, the analysis of iterative schemes to recover the unknown terms is an essential feature of the work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将解决反问题一般领域中的三个主题,即恢复期望未知所需的数据量,根据数据测量的结果的稳定性,以及是否存在从测量数据到期望未知的算法。其中每一项都将是本提案工作的重要组成部分。第一个是关键的,从数学的角度来看,通常是最具挑战性的。如果没有这样的结果,我们就不能保证,即使找到数学问题的解决方案,也能使我们将其与实际的物理解决方案相关联。在我们预计的每一部作品中,这将需要最大的努力和挑战。回答稳定性问题将是我们确定以下问题的关键:“给定我们构建的解决方案与实际解决方案之间的容差水平,使我们能够实现这一点的数据测量中允许的最大误差是多少。”当然,要实现这一点,需要一种重建方法,而每种算法,即使它提供了解决方案,也可能需要数据上的不同误差界。因此,在某种意义上,我们必须回答的问题不仅是能否找到一种计算算法,而且在什么意义上它接近于最优?后一个问题是一个数学能力很强的本科生可以参与的问题。对这类学生的辅导将是这项工作的一个方面。该项目每年将资助3名本科生获得3年助学金。具体地说,寻求恢复非线性反应扩散方程和抛物型系统中的非线性项,即依赖于解本身的系数,如电导率、反应或相互作用项。这里的一个例子是复杂的物种间相互作用项中的(空间或环境变量)速率系数,它本身必须像复杂的流行病模型中的典型那样被确定。还考虑了出现在例如医学成像中的非线性双曲型方程。非线性声学具有本质上表示要重建的对象的项,并且该项耦合到由非线性模型产生的第二项,并且作为偏微分算子的前导项中的系数出现。保留非线性效应的最简单模型是将其作为恒等式运算符,但更现实的情况是假设这更复杂,并另外寻求其恢复。衰减波动方程广泛存在于物理和工程的许多领域。通常的假设是,阻尼机构与速度成正比,因此在基本方程中加入了时间导数项。在声学、粘弹性、结构振动和地震波传播等应用中经常观察到,阻尼值的大小与频率有关,并服从幂函数行为。一个典型的公式涉及非局部类型的算子,这些算子通常基于分数导数或微分算子的分数次方。其目的是探索这些影响,特别强调询问对于两种类型的阻尼,反问题是否更容易处理(即,在病态和数值方法的收敛方面)。在所有情况下,分析迭代方案以恢复未知项是工作的一个基本特征。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniqueness for an inverse coefficient problem for a one-dimensional time-fractional diffusion equation with non-zero boundary conditions
  • DOI:
    10.1080/00036811.2021.1965583
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    W. Rundell;Masahiro Yamamoto
  • 通讯作者:
    W. Rundell;Masahiro Yamamoto
On an inverse problem of nonlinear imaging with fractional damping
  • DOI:
    10.1090/mcom/3683
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Kaltenbacher;W. Rundell
  • 通讯作者:
    B. Kaltenbacher;W. Rundell
Determining damping terms in fractional wave equations
  • DOI:
    10.1088/1361-6420/ac6b31
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    B. Kaltenbacher;W. Rundell
  • 通讯作者:
    B. Kaltenbacher;W. Rundell
Determining the nonlinearity in an acoustic wave equation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Rundell其他文献

An information-theoretic approach to the written transmission of old English
  • DOI:
    10.1007/bf00130034
  • 发表时间:
    1989-12-01
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Katherine O'Brien O'Keeffe;William Rundell
  • 通讯作者:
    William Rundell

William Rundell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Rundell', 18)}}的其他基金

Analysis and Computation for Inverse Problems in Differential Equations
微分方程反问题的分析与计算
  • 批准号:
    1620138
  • 财政年份:
    2016
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Continuing Grant
Uniqueness and Reconstructions Methods for Inverse Problems
反问题的唯一性和重构方法
  • 批准号:
    1319052
  • 财政年份:
    2013
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant
Graduate Student and Postdoctoral Conference on Applied Inverse Problems
应用反问题研究生和博士后会议
  • 批准号:
    1112902
  • 财政年份:
    2011
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant
Reconstruction algorithms for inverse obstacle problems
逆障碍问题的重构算法
  • 批准号:
    0715060
  • 财政年份:
    2007
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
  • 批准号:
    9707930
  • 财政年份:
    1997
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences:Reconstructions Methods for Inverse Problems in Multiple Dimensions
数学科学:多维反问题的重构方法
  • 批准号:
    9501030
  • 财政年份:
    1995
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Multidimensional Reconstruction Methods for Inverse Problems
数学科学:反问题的多维重构方法
  • 批准号:
    9202352
  • 财政年份:
    1992
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Inverse Problems in Differential Equations: Computational Algorithms; March 10-14, 1991, College Station, Texas
数学科学:微分方程反问题会议:计算算法;
  • 批准号:
    9015637
  • 财政年份:
    1991
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences Research Scientist
数学科学研究科学家
  • 批准号:
    9103519
  • 财政年份:
    1991
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences Research Equipment
数学科学研究设备
  • 批准号:
    8804590
  • 财政年份:
    1988
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant

相似海外基金

Nonlinear inverse problems in holography and particle kinematics
全息术和粒子运动学中的非线性反问题
  • 批准号:
    RGPIN-2022-03290
  • 财政年份:
    2022
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear inverse problems in holography and particle kinematics
全息术和粒子运动学中的非线性反问题
  • 批准号:
    DGECR-2022-00438
  • 财政年份:
    2022
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Discovery Launch Supplement
Inverse Problems for Nonlinear Wave Phenomena
非线性波现象的反问题
  • 批准号:
    2154489
  • 财政年份:
    2022
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant
CAREER: Scalable Algorithms for Nonlinear, Large-Scale Inverse Problems Governed by Dynamical Systems
职业:动态系统控制的非线性、大规模反问题的可扩展算法
  • 批准号:
    2145845
  • 财政年份:
    2022
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Continuing Grant
Taming Nonlinear Inverse Problems: Theory and Algorithms
驯服非线性反问题:理论与算法
  • 批准号:
    2126634
  • 财政年份:
    2021
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Models and Regularization for Infinite-Dimensional Inverse Problems
职业:无限维反问题的非线性模型和正则化
  • 批准号:
    1943201
  • 财政年份:
    2020
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Continuing Grant
Inverse Problems and Imaging with Nonlinear Physics
非线性物理反演问题和成像
  • 批准号:
    1913309
  • 财政年份:
    2019
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant
Nonlinear geometric inverse problems
非线性几何反问题
  • 批准号:
    EP/R002207/1
  • 财政年份:
    2018
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Research Grant
Iteratively Regularized Broyden-Type Algorithms for Nonlinear Inverse Problems
非线性反问题的迭代正则布罗伊登型算法
  • 批准号:
    1818886
  • 财政年份:
    2018
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Standard Grant
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2018
  • 资助金额:
    $ 21.03万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了