Reconstruction algorithms for inverse obstacle problems

逆障碍问题的重构算法

基本信息

  • 批准号:
    0715060
  • 负责人:
  • 金额:
    $ 26.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

Many parameters of physical interest cannot be studied directly. Examples include: imaging the interior of the body or locating buried objects; determining the location and size of cracks within solid objects; reconstructing material parameters such as the conductivity of interior regions. When these problems are translated into mathematical terms they take the form of partial differential equations. However, since we have additional unknowns in the model, these introduce unknown parameters in the equations that we must additionally resolve by means of further measurements. A central theme of the proposal is the question of when a unique determination can be made (what is the minimal amount of data needed) as well as the design of algorithms for the efficient numerical recovery of the unknowns. This proposal considers the practical and computational aspects of this from a mathematical perspective. Specific problems addressed include the recovery of the location, shape, and material properties of interior objects from surface measurements. In such inverse problems two things must always be understood. First, the reconstructions will be extremely sensitive to small changes in the data, this is inherent in the underlying physics; in mathematical terms these are highly ill-conditioned problems containing both analytical and computational complexity. Second, the available data is always subject to error. However, we may know a model for the data error such as, for example, its mean and variance. This proposal seeks a formulation that will allow us to provide similar information on the geometry of the obstacle - namely a quantitative assessment of the ranges of reconstructions one could expect with a given level of data error. This would allow us to assign a probability that a particular feature would be identifiable or that, say, the volume of the object is greater than a given value.The proposal has a range of broader impacts.These include not only the breadth of applications to science and engineering covered by these inverse problems, but there is an important training aspect involved. Specifically, many of the problems have simplified versions where both the experimental apparatus needed as well as some of the corresponding reconstruction algorithms are within reach of advanced undergraduates. This will enable a wider audience to gain an understanding of both the challenges and possible solutions to these ubiquitous but complex problems.
许多物理参数不能直接研究。示例包括:对身体内部进行成像或定位被掩埋的物体;确定固体物体内裂缝的位置和大小;重建材料参数,如内部区域的导电性。当这些问题被转化为数学术语时,它们采取偏微分方程的形式。然而,由于模型中有额外的未知数,因此这些在方程中引入了未知参数,我们必须通过进一步的测量来额外求解这些参数。该提案的一个中心主题是什么时候可以做出唯一的决定(所需的最小数据量是多少)以及设计算法以有效地恢复未知数。该提案从数学的角度考虑了其实践和计算方面。解决的具体问题包括从表面测量中恢复内部物体的位置、形状和材料特性。在这样的逆问题中,必须始终理解两件事。首先,重建将对数据中的微小变化非常敏感,这是基础物理学所固有的;在数学术语中,这些是包含分析和计算复杂性的高度病态问题。第二,现有的数据总是有误差的。然而,我们可能知道数据误差的模型,例如其均值和方差。该建议寻求一种配方,将使我们能够提供类似的信息的几何形状的障碍-即定量评估的范围内的重建,人们可以预期与给定的数据误差水平。这将使我们能够分配一个概率,一个特定的功能将是可识别的,或者说,物体的体积大于给定的值。该提案有一系列更广泛的影响,其中不仅包括这些反问题所涵盖的科学和工程应用的广度,但有一个重要的培训方面涉及。具体来说,许多问题都有简化的版本,其中所需的实验装置以及一些相应的重建算法都在高年级本科生的能力范围内。这将使更广泛的受众能够了解这些普遍存在但复杂的问题的挑战和可能的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Rundell其他文献

An information-theoretic approach to the written transmission of old English
  • DOI:
    10.1007/bf00130034
  • 发表时间:
    1989-12-01
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Katherine O'Brien O'Keeffe;William Rundell
  • 通讯作者:
    William Rundell

William Rundell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Rundell', 18)}}的其他基金

Inverse Problems for Nonlinear Partial Differential Equations
非线性偏微分方程的反问题
  • 批准号:
    2111020
  • 财政年份:
    2021
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Analysis and Computation for Inverse Problems in Differential Equations
微分方程反问题的分析与计算
  • 批准号:
    1620138
  • 财政年份:
    2016
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Continuing Grant
Uniqueness and Reconstructions Methods for Inverse Problems
反问题的唯一性和重构方法
  • 批准号:
    1319052
  • 财政年份:
    2013
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Graduate Student and Postdoctoral Conference on Applied Inverse Problems
应用反问题研究生和博士后会议
  • 批准号:
    1112902
  • 财政年份:
    2011
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
  • 批准号:
    9707930
  • 财政年份:
    1997
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences:Reconstructions Methods for Inverse Problems in Multiple Dimensions
数学科学:多维反问题的重构方法
  • 批准号:
    9501030
  • 财政年份:
    1995
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Multidimensional Reconstruction Methods for Inverse Problems
数学科学:反问题的多维重构方法
  • 批准号:
    9202352
  • 财政年份:
    1992
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Inverse Problems in Differential Equations: Computational Algorithms; March 10-14, 1991, College Station, Texas
数学科学:微分方程反问题会议:计算算法;
  • 批准号:
    9015637
  • 财政年份:
    1991
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences Research Scientist
数学科学研究科学家
  • 批准号:
    9103519
  • 财政年份:
    1991
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences Research Equipment
数学科学研究设备
  • 批准号:
    8804590
  • 财政年份:
    1988
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of algorithms for duality based inverse design
基于对偶性的逆设计算法研究
  • 批准号:
    572383-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Algorithms for Learning Regularizations of Inverse Problems with High Data Heterogeneity
合作研究:高数据异质性逆问题的学习正则化算法
  • 批准号:
    2152960
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: Algorithms for Learning Regularizations of Inverse Problems with High Data Heterogeneity
合作研究:高数据异质性逆问题的学习正则化算法
  • 批准号:
    2152961
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Continuing Grant
CAREER: Scalable Algorithms for Nonlinear, Large-Scale Inverse Problems Governed by Dynamical Systems
职业:动态系统控制的非线性、大规模反问题的可扩展算法
  • 批准号:
    2145845
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Continuing Grant
Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2021
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Discovery Grants Program - Individual
Neuroimage-driven biophysical inverse problems for atrophy and tau propagation
神经图像驱动的萎缩和 tau 传播的生物物理逆问题
  • 批准号:
    10302105
  • 财政年份:
    2021
  • 资助金额:
    $ 26.05万
  • 项目类别:
Taming Nonlinear Inverse Problems: Theory and Algorithms
驯服非线性反问题:理论与算法
  • 批准号:
    2126634
  • 财政年份:
    2021
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2021
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Discovery Grants Program - Individual
New Sampling Algorithms and Inverse Spectral Methods in Scattering
散射中的新采样算法和逆谱方法
  • 批准号:
    2107891
  • 财政年份:
    2021
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了