Iteratively Regularized Broyden-Type Algorithms for Nonlinear Inverse Problems

非线性反问题的迭代正则布罗伊登型算法

基本信息

项目摘要

The goal of this project is to tackle major computational challenges faced by scientists and engineers in their quest to improve the accuracy and efficiency of numerical algorithms for solving large-scale inverse problems. This is a scenario where direct measurements of the unknown quantities are not feasible, and one needs to identify "cause from effect" by using (generally nonlinear) mathematical and statistical models. The resulting problems are notoriously ill-posed (or unstable), in a sense that even small measurement errors in the input data may give rise to a substantial noise propagation in the recovered solution, to the extent that this solution gets entirely destroyed. For this reason, special techniques called "regularization" must be combined with high-speed optimization procedures, so that reliable information on the unknown effect could be obtained from the available data. The key areas of application include imaging and sensing technology, machine learning, gravitational sounding, ocean acoustics, and data sciences.This project aims at the development of iteratively regularized Broyden-type numerical algorithms for solving nonlinear ill-posed inverse problems in either finite or infinite dimensional spaces. A family of new regularization methods will be designed to solve large-scale unstable least squares problems, where the Jacobian of a discretized nonlinear operator is difficult or even impossible to compute. To overcome this obstacle, PIs consider a family of Gauss-Newton and Levenberg-Marquardt algorithms with the Frechet derivative operator recalculated recursively by using Broyden-type single rank updates. To balance accuracy and stability, the pseudo-inverse for the derivative-free Jacobian is regularized in a problem-specific manner at every step of the iteration process. A variety of filters will be investigated, yielding greater flexibility in the use of qualitative and quantitative a priori information available for each particular applied problem. The proposed iteratively regularized methods will be studied in both deterministic and stochastic settings. For stochastic processes, the minimization functionals are evaluated subject to stochastic errors due to inexact computations to lower per-iteration cost, and/or unavoidable environmental noise and fluctuations. In the framework of the proposed research, PIs will conduct comprehensive convergence analysis of the new algorithms, including convergence rates and optimal policies for the selection of regularization parameters and step sizes. In addition to the theoretical investigation, a significant component of this project is to evaluate the proposed algorithms using extensive numerical experiments on real-world nonlinear inverse problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是解决科学家和工程师在寻求提高求解大规模逆问题的数值算法的精度和效率时所面临的主要计算挑战。在这种情况下,直接测量未知量是不可行的,需要通过使用(通常是非线性的)数学和统计模型来确定“因果关系”。由此产生的问题是众所周知的不适定(或不稳定),在某种意义上,即使是输入数据中的小测量误差也可能在恢复的解中引起大量的噪声传播,以至于该解被完全破坏。因此,称为“正则化”的特殊技术必须与高速优化程序相结合,以便从现有数据中获得关于未知效应的可靠信息。主要应用领域包括成像和传感技术、机器学习、重力探测、海洋声学和数据科学。该项目旨在开发迭代正则化Broyden型数值算法,用于解决有限维或无限维空间中的非线性不适定反问题。一类新的正则化方法将被设计来解决大规模不稳定最小二乘问题,其中离散非线性算子的雅可比矩阵很难甚至不可能计算。为了克服这一障碍,PI考虑一个家庭的高斯-牛顿和Levenberg-Marquardt算法与Frechet导数算子重新计算递归使用Broyden型单秩更新。为了平衡精度和稳定性,在迭代过程的每一步,以特定于问题的方式正则化无导数雅可比矩阵的伪逆。各种过滤器将进行调查,产生更大的灵活性,在使用定性和定量的先验信息可用于每个特定的应用问题。我们将在确定性和随机性两种环境下研究所提出的迭代正则化方法。对于随机过程,由于不精确的计算,以降低每次迭代的成本,和/或不可避免的环境噪声和波动的随机误差的最小化泛函进行评估。在拟议的研究框架内,PI将对新算法进行全面的收敛性分析,包括收敛速度和正则化参数和步长选择的最佳策略。除了理论研究之外,该项目的一个重要组成部分是使用真实世界非线性逆问题的广泛数值实验来评估所提出的算法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Stable Parameter Estimation and Forecasting in Epidemiology by the Levenberg–Marquardt Algorithm with Broyden’s Rank-one Updates for the Jacobian Operator
  • DOI:
    10.1007/s11538-019-00650-9
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    A. Smirnova;Benjamin Sirb;G. Chowell
  • 通讯作者:
    A. Smirnova;Benjamin Sirb;G. Chowell
Joint Edge Reconstruction in Multi-Contrast Medical Imaging
多对比医学成像中的联合边缘重建
Deep Parallel MRI Reconstruction Network Without Coil Sensitivities
  • DOI:
    10.1007/978-3-030-61598-7_2
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wanyu Bian;Yunmei Chen;X. Ye
  • 通讯作者:
    Wanyu Bian;Yunmei Chen;X. Ye
Numerical solution of inverse problems by weak adversarial networks
  • DOI:
    10.1088/1361-6420/abb447
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Gang Bao;X. Ye;Yaohua Zang;Haomin Zhou
  • 通讯作者:
    Gang Bao;X. Ye;Yaohua Zang;Haomin Zhou
Variational Model-Based Deep Neural Networks for Image Reconstruction
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandra Smirnova其他文献

Pathologic substrate of gastropathy in Anderson-Fabry disease
  • DOI:
    10.1186/s13023-020-01436-2
  • 发表时间:
    2020-06-22
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Alessandro Di Toro;Nupoor Narula;Lorenzo Giuliani;Monica Concardi;Alexandra Smirnova;Valentina Favalli;Mario Urtis;Costanza Alvisi;Elena Antoniazzi;Eloisa Arbustini
  • 通讯作者:
    Eloisa Arbustini
Estimation of Time-Dependent Transmission Rate for COVID-19 SVIRD Model Using Predictor-Corrector Algorithm
使用预测校正器算法估计 COVID-19 SVIRD 模型的时间相关传播率
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruiyan Luo;A. D. Herrera;Yena Kim;Susan Rogowski;Diana White;Alexandra Smirnova
  • 通讯作者:
    Alexandra Smirnova
Synchronization in Dynamical Networks with Mixed Coupling
混合耦合动态网络中的同步
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas M Carter;Jr;Alexandra Smirnova;Vladimir Bondarenko;Yaroslav Molkov
  • 通讯作者:
    Yaroslav Molkov

Alexandra Smirnova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandra Smirnova', 18)}}的其他基金

On Low-Rank Regularization for Ill-Posed Nonlinear Parameter Estimation
病态非线性参数估计的低秩正则化
  • 批准号:
    2011622
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Continuous Regularization for Nonlinear Ill-Posed Problems
非线性不适定问题的连续正则化
  • 批准号:
    1112897
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Theoretical and Numerical Investigation of Dynamical Systems Method for Solving Linear and Nonlinear Ill-Posed Problems
解决线性和非线性不适定问题的动力系统方法的理论和数值研究
  • 批准号:
    0207050
  • 财政年份:
    2002
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
  • 批准号:
    2336469
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
LEAPS-MPS: Time-Discrete Regularized Variational Model for Brittle Fracture in Novel Strain-Limiting Elastic Solids
LEAPS-MPS:新型应变限制弹性固体中脆性断裂的时间离散正则化变分模型
  • 批准号:
    2316905
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Regularized divergences and their gradient flows, generative modeling and structure-preserving learning.
正则化散度及其梯度流、生成建模和结构保持学习。
  • 批准号:
    2307115
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Regularized Dirichlet-Multinomial Regression Mixture Model with Applications to the Gut Microbiome
正则化狄利克雷多项回归混合模型及其在肠道微生物组中的应用
  • 批准号:
    570145-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Ultrasound phantom-free regularized local attenuation imaging
超声无模体正则化局部衰减成像
  • 批准号:
    561770-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Alliance Grants
CAREER: Physics Regularized Machine Learning Theory: Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems
职业:物理正则化机器学习理论:为智能移动系统建模随机交通流模式
  • 批准号:
    2234289
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
New Challenges in Statistical Inference with Regularized Optimal Transport
正则化最优传输统计推断的新挑战
  • 批准号:
    2210368
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Ultrasound phantom-free regularized local attenuation imaging
超声无模体正则化局部衰减成像
  • 批准号:
    561770-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Alliance Grants
CAREER: Physics Regularized Machine Learning Theory: Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems
职业:物理正则化机器学习理论:为智能移动系统建模随机交通流模式
  • 批准号:
    2047268
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Improving representativeness in non-probability surveys and causal inference with regularized regression and post-stratification
通过正则化回归和后分层提高非概率调查和因果推断的代表性
  • 批准号:
    10219956
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了