Approximation and Analysis of Selected Nonsmooth, Nonlinear, and Nonlocal Equations
选定的非光滑、非线性和非局部方程的逼近和分析
基本信息
- 批准号:2111228
- 负责人:
- 金额:$ 36.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The numerical approximation of partial differential equations, and the analysis of schemes to approximate the solution of classical models in the pure and applied sciences, is a well-established topic. There are general theories to deduce convergence and accuracy of approximations. However, new classes of models have recently appeared that do not lend themselves to the general treatment and require new techniques and ideas. In this project the PI aims to develop, together with students and a postdoctoral associate, rigorous analyses of approximation techniques for nonsmooth, nonlinear, and nonlocal systems that describe a wide range of phenomena. The analysis will require a careful interplay between subtle smoothness properties of the solutions and the fine structure of the problems and schemes at hand. The analysis will borrow techniques, not among the standard tools invoked in numerical analysis, from other fields of mathematics. The research will enhance modeling and prediction capabilities for this important class of models, and early-career researchers will be trained through involvement in the project.Systems under study in this project include a) initial value problems where the presence of singular data or the inherent nature of the equation make the solution very rough; b) nonlinear systems where the strength of the nonlinearity is such that even for smooth data one cannot immediately assert the smoothness of the solution; c) nonlocal problems, those which describe long range interactions or memory effects and, thus, the determination of the state of the system at one point requires global knowledge; and d) nonvariational equations, that is, those that do not arise from conservation principles. In all these examples, standard arguments invoked to establish stability and convergence of numerical methods are not effective. As an outcome of this work, new numerical techniques will be developed, and the existing ones will be strengthened by solid mathematical analysis of their approximation properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
偏微分方程的数值近似,以及在纯科学和应用科学中对经典模型的近似解的方案分析,是一个公认的主题。有一般的理论来推导近似的收敛性和精度。然而,最近出现了新的模型类别,它们不适合一般的治疗,需要新的技术和想法。在这个项目中,PI的目的是开发,与学生和博士后一起,严格分析近似技术的非光滑,非线性和非局部系统,描述了广泛的现象。这种分析需要在解的细微光滑性与问题和方案的精细结构之间仔细地相互作用。分析将借用技术,而不是在数值分析中调用的标准工具,从其他数学领域。该研究将提高这类重要模型的建模和预测能力,并通过参与该项目培训早期职业研究人员。该项目研究的系统包括:a)初始值问题,其中奇异数据的存在或方程的固有性质使解非常粗糙; B)非线性系统,其中非线性的强度使得即使对于平滑数据也不能立即断言解的平滑性; c)非局部问题,描述长程相互作用或记忆效应的问题,因此确定系统在某一点的状态需要全局知识; d)非变分方程,即那些不是由守恒原理产生的方程。在所有这些例子中,用来建立数值方法的稳定性和收敛性的标准参数都是无效的。作为这项工作的成果,新的数值技术将被开发,现有的将通过对它们的近似特性进行坚实的数学分析来加强。这个奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra
凸多面体上加权空间流体的一些模型的分析与逼近
- DOI:10.1007/s00211-022-01272-5
- 发表时间:2022
- 期刊:
- 影响因子:2.1
- 作者:Otárola, Enrique;Salgado, Abner J.
- 通讯作者:Salgado, Abner J.
Benchmark computations of the phase field crystal and functionalized Cahn-Hilliard equations via fully implicit, Nesterov accelerated schemes
- DOI:10.4208/cicp.oa-2022-0117
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Jea-Hyun Park;A. Salgado;S. Wise
- 通讯作者:Jea-Hyun Park;A. Salgado;S. Wise
Diagonally implicit Runge-Kutta schemes: Discrete energy-balance laws and compactness properties
对角隐式龙格-库塔格式:离散能量平衡定律和紧致性
- DOI:10.1515/jnma-2022-0069
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Salgado, Abner J.;Tomas, Ignacio
- 通讯作者:Tomas, Ignacio
Time fractional gradient flows: Theory and numerics
- DOI:10.1142/s0218202523500100
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Wenbo Li;A. Salgado
- 通讯作者:Wenbo Li;A. Salgado
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abner Salgado其他文献
Abner Salgado的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abner Salgado', 18)}}的其他基金
The 50th John Barrett Memorial Lecture in 2020 on Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models.
2020 年第 50 届 John Barrett 纪念讲座,主题为非局部非线性模型的逼近、应用和分析。
- 批准号:
2001695 - 财政年份:2020
- 资助金额:
$ 36.75万 - 项目类别:
Standard Grant
Approximation of Singular Solutions to Nonlocal and Nonlinear Models
非局部和非线性模型奇异解的逼近
- 批准号:
1720213 - 财政年份:2017
- 资助金额:
$ 36.75万 - 项目类别:
Continuing Grant
Numerical Analysis of Selected Variational and Quasi-variational Inequalities
选定变分和拟变分不等式的数值分析
- 批准号:
1418784 - 财政年份:2014
- 资助金额:
$ 36.75万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Selected Topics in Geometric Analysis
几何分析精选主题
- 批准号:
RGPIN-2016-03709 - 财政年份:2021
- 资助金额:
$ 36.75万 - 项目类别:
Discovery Grants Program - Individual
Selected topics in harmonic analysis
谐波分析精选主题
- 批准号:
RGPIN-2017-03752 - 财政年份:2021
- 资助金额:
$ 36.75万 - 项目类别:
Discovery Grants Program - Individual
Selected Topics in Geometric Analysis
几何分析精选主题
- 批准号:
RGPIN-2016-03709 - 财政年份:2020
- 资助金额:
$ 36.75万 - 项目类别:
Discovery Grants Program - Individual
Selected topics in harmonic analysis
谐波分析精选主题
- 批准号:
RGPIN-2017-03752 - 财政年份:2020
- 资助金额:
$ 36.75万 - 项目类别:
Discovery Grants Program - Individual
Genetic and phenotypic analysis of Drosophila selected for reversed dimorpshim
反向二吗啉选择的果蝇的遗传和表型分析
- 批准号:
552541-2020 - 财政年份:2020
- 资助金额:
$ 36.75万 - 项目类别:
University Undergraduate Student Research Awards
Selected Topics in Geometric Analysis
几何分析精选主题
- 批准号:
RGPIN-2016-03709 - 财政年份:2019
- 资助金额:
$ 36.75万 - 项目类别:
Discovery Grants Program - Individual
Selected topics in harmonic analysis
谐波分析精选主题
- 批准号:
RGPIN-2017-03752 - 财政年份:2019
- 资助金额:
$ 36.75万 - 项目类别:
Discovery Grants Program - Individual
Geographies of (small) hydropower development in selected transnational basins of China (Yunnan and Xinjiang). A comparative analysis of the Water-Energy-Environment Nexus.
中国选定跨国流域(云南和新疆)的(小)水电开发地理。
- 批准号:
412091045 - 财政年份:2019
- 资助金额:
$ 36.75万 - 项目类别:
Research Grants
Doctoral Dissertation Research: Science in Court: An analysis of selected environmental litigation in the US from 1990 to 2018
博士论文研究:法庭科学:1990年至2018年美国部分环境诉讼分析
- 批准号:
1854168 - 财政年份:2019
- 资助金额:
$ 36.75万 - 项目类别:
Standard Grant
Analysis of oxidoreductases directly selected from wood decay environments
直接从木材腐烂环境中选择的氧化还原酶的分析
- 批准号:
19K15881 - 财政年份:2019
- 资助金额:
$ 36.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists