Rapid and Robust High Order Spectral Solvers for Learning Photonic Structures
用于学习光子结构的快速、鲁棒的高阶谱求解器
基本信息
- 批准号:2111283
- 负责人:
- 金额:$ 42.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past two decades engineers have built optical devices with stunning capabilities of detection, sensing, and imaging. While intuition has been an invaluable guide in pushing the envelope of what is possible, the increasing complexity of design and the wide array of available components is rendering this approach ever more difficult. For this reason, numerical simulation has become an invaluable tool. As this approach becomes ever more pervasive, the search for rapid, robust, and highly accurate algorithms has become quite acute. The PI will enhance his class of simulation tools by exploring new avenues of numerical approximation, novel paths to enforcing the governing equations, and appealing to the powerful methods of Machine Learning (in particular, Deep Learning) to discover optimal parameter values for device design. The PI will also develop a rigorous analysis of these new numerical schemes in order to evaluate and validate their real-world performance. This project will provide support for one graduate student each year of the three year award.Over the past two decades engineers have built optical devices with stunning capabilities of detection, sensing, and imaging. While intuition and linearized models have been invaluable guides in pushing the envelope of what is possible, the increasing complexity of design and the wide array of available components is rendering this approach ever more difficult. For this reason, numerical simulation has become an invaluable tool. As this approach becomes ever more pervasive, the search for rapid, robust, and highly accurate algorithms has become quite acute. The PI will enhance his class of High-Order Spectral solvers with the following objectives: (1) Incorporating two-dimensional materials into his rapid and highly accurate three-dimensional "Field Expansions" vector Maxwell equation solver; (2) Expand his "High-Order Perturbation of Surfaces/Asymptotic Waveform Evaluation" algorithm for joint geometry/frequency perturbation to the three-dimensional vector Maxwell equations; (3) Extend his "High-Order Perturbation of Envelopes" algorithm for structural perturbations to this three--dimensional case; (4) Provide rigorous analytical justification for each of the latter two; and (5) Bring to bear the powerful new tools of Deep Learning to discover optimal parameter values for device design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年里,工程师们已经制造出了具有惊人的探测、传感和成像能力的光学设备。 虽然直觉一直是推动可能性的宝贵指南,但设计的日益复杂性和各种可用组件使这种方法变得更加困难。因此,数值模拟已经成为一种非常有用的工具。随着这种方法变得越来越普遍,对快速、鲁棒和高度准确的算法的搜索变得非常尖锐。 PI将通过探索数值近似的新途径,执行控制方程的新途径,以及吸引强大的机器学习方法(特别是深度学习)来发现器件设计的最佳参数值,来增强他的仿真工具类。PI还将对这些新的数值方案进行严格的分析,以评估和验证其真实世界的性能。在过去的二十年里,工程师们已经建造了具有惊人的检测,传感和成像能力的光学设备。 虽然直觉和线性化模型在推动可能性方面起到了宝贵的指导作用,但设计的日益复杂性和各种可用组件使这种方法变得更加困难。 因此,数值模拟已经成为一种非常有用的工具。 随着这种方法变得越来越普遍,对快速、鲁棒和高度准确的算法的搜索变得非常尖锐。 主要研究者将提高他的高阶谱解算器的水平,其目标如下:(1)将二维材料简化为他的快速和高精度的三维“场展开”矢量麦克斯韦方程解算器;(2)将他的“高阶表面扰动/渐近波形评估”算法扩展为三维矢量麦克斯韦方程的联合几何/频率扰动;(3)将他的“高阶包络摄动法”推广到三维情形,(4)对后两种方法进行了严格的分析论证;以及(5)利用强大的深度学习新工具来发现设备设计的最佳参数值。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A high–order spectral algorithm for the numerical simulation of layered media with uniaxial hyperbolic materials
用于单轴双曲材料层状介质数值模拟的高阶谱算法
- DOI:10.1016/j.jcp.2022.110961
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Nicholls, David P.
- 通讯作者:Nicholls, David P.
Data-Driven Design of Thin-Film Optical Systems using Deep Active Learning
使用深度主动学习的薄膜光学系统的数据驱动设计
- DOI:10.1364/oe.459295
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Hong, Y.;Nicholls, D.
- 通讯作者:Nicholls, D.
Joint Geometry/Frequency Analyticity of Fields Scattered by Periodic Layered Media
- DOI:10.1137/22m1477568
- 发表时间:2023-06
- 期刊:
- 影响因子:2
- 作者:Matthew Kehoe;D. Nicholls
- 通讯作者:Matthew Kehoe;D. Nicholls
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Nicholls其他文献
An Optical Analysis of Radiation-Induced Damage in Nuclear Reactor Optical Fibres
核反应堆光纤辐射损伤的光学分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bongani G. Maqabuka;Graham C. Daniels;S. Connell;Francois Pieterse;Linina Bedhesi;Eric Chinaka;Pathmanathan Naidoo;David Nicholls;Johan Slabber - 通讯作者:
Johan Slabber
The complex cyanides of chromium(II) and chromium(0)
- DOI:
10.1007/bf00618223 - 发表时间:
1981-08-01 - 期刊:
- 影响因子:1.700
- 作者:
Janice P. Eaton;David Nicholls - 通讯作者:
David Nicholls
Co-ordination compounds of diacetyldihydrazone and diacetylbis(monomethylhydrazone)
- DOI:
10.1007/bf00935930 - 发表时间:
1984-04-01 - 期刊:
- 影响因子:1.700
- 作者:
Mark R. Harrison;David Nicholls - 通讯作者:
David Nicholls
Bioenergetic actions of beta-bungarotoxin, dendrotoxin and bee-venom phospholipase A2 on guinea-pig synaptosomes.
β-银环蛇毒素、树蛇毒素和蜂毒磷脂酶 A2 对豚鼠突触体的生物能作用。
- DOI:
10.1042/bj2290653 - 发表时间:
1985 - 期刊:
- 影响因子:0
- 作者:
David Nicholls;R. Snelling;Oliver;DOLLYt - 通讯作者:
DOLLYt
Evaluating life cycle greenhouse gas emissions from alternative forest residue utilization: Energy and product pathways
评估替代性森林残留物利用的生命周期温室气体排放:能源与产品路径
- DOI:
10.1016/j.biombioe.2025.108059 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:5.800
- 作者:
Poonam Khatri;Richard Bergman;Prakash Nepal;David Nicholls;Andrew Gray - 通讯作者:
Andrew Gray
David Nicholls的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Nicholls', 18)}}的其他基金
OP: High Accuracy Modeling of Graphene Plasmonics in Three Dimensional Grating Structures
OP:三维光栅结构中石墨烯等离子体的高精度建模
- 批准号:
1813033 - 财政年份:2018
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
OP: High Order Perturbation of Surfaces Methods for Crossed Surface Plasmon Resonance Sensors: Simulation, Validation, and Design
OP:交叉表面等离子共振传感器的表面高阶扰动方法:仿真、验证和设计
- 批准号:
1522548 - 财政年份:2015
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
Collaborative Research: AFfield Expansion Method for Acoustic Scattering from Topography: Extensions to Elasticity and the Inverse Problem
合作研究:地形声学散射的 AF 场展开方法:弹性和反问题的扩展
- 批准号:
1115333 - 财政年份:2011
- 资助金额:
$ 42.08万 - 项目类别:
Continuing Grant
Numerical Algorithms for the Detection and Simulation of Surface Water Waves
地表水波检测和模拟的数值算法
- 批准号:
0810958 - 财政年份:2008
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
Free Surface Fluid Mechanics and Electromagnetic Scattering: Stable, High-Order Perturbation Techniques
自由表面流体力学和电磁散射:稳定的高阶扰动技术
- 批准号:
0537511 - 财政年份:2005
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
Free Surface Fluid Mechanics and Electromagnetic Scattering: Stable, High-Order Perturbation Techniques
自由表面流体力学和电磁散射:稳定的高阶扰动技术
- 批准号:
0406007 - 财政年份:2004
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fully Nonlinear, Three-Dimensional, Surface Water Waves in Arbitrary Depth
FRG:合作研究:任意深度的完全非线性、三维、表面水波
- 批准号:
0139822 - 财政年份:2002
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
High Order Boundary Perturbation Methods for Boundary Value and Free Boundary Problems
边界值和自由边界问题的高阶边界摄动方法
- 批准号:
0196452 - 财政年份:2001
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
High Order Boundary Perturbation Methods for Boundary Value and Free Boundary Problems
边界值和自由边界问题的高阶边界摄动方法
- 批准号:
0072462 - 财政年份:2000
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Robust and highly selective proton MRSI on a clinical 3 T system using a second order gradient insert, for application in schizophrenia
使用二阶梯度插入的临床 3 T 系统上的鲁棒性和高选择性质子 MRSI,用于精神分裂症的应用
- 批准号:
10741355 - 财政年份:2023
- 资助金额:
$ 42.08万 - 项目类别:
LEAPS-MPS: Robust and High Order Numerical Simulation for Phase Field Modeling
LEAPS-MPS:相场建模的鲁棒高阶数值模拟
- 批准号:
2213436 - 财政年份:2022
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
Development of robust non-contact heart rate detection system using high order statistics to interference
利用高阶统计干扰开发稳健的非接触式心率检测系统
- 批准号:
21K04094 - 财政年份:2021
- 资助金额:
$ 42.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CHS: Small: Collaborative Research: Robust High Order Meshing and Analysis for Design Pipeline Automation
CHS:小型:协作研究:用于设计流程自动化的鲁棒高阶网格划分和分析
- 批准号:
1908767 - 财政年份:2019
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Robust High Order Meshing and Analysis for Design Pipeline Automation
CHS:小型:协作研究:用于设计流程自动化的鲁棒高阶网格划分和分析
- 批准号:
1910486 - 财政年份:2019
- 资助金额:
$ 42.08万 - 项目类别:
Standard Grant
Towards robust and reliable short-range order measurement using electron spectroscopy
使用电子能谱实现稳健可靠的短程有序测量
- 批准号:
2126184 - 财政年份:2018
- 资助金额:
$ 42.08万 - 项目类别:
Studentship
Robust multi-objective job-shop scheduling for make-to-order manufacturing
用于按单生产的稳健多目标车间调度
- 批准号:
521778-2017 - 财政年份:2017
- 资助金额:
$ 42.08万 - 项目类别:
Engage Grants Program
Robust and Efficient Finite Element Discretizations for Higher-Order Gradient Formulations
高阶梯度公式的稳健且高效的有限元离散化
- 批准号:
392564687 - 财政年份:2017
- 资助金额:
$ 42.08万 - 项目类别:
Priority Programmes
What sensors, materials and interface can we develop in order to establish an efficient and robust sensor, that can be used readily and reliably in outdoor settings?
我们可以开发哪些传感器、材料和接口来建立高效、坚固的传感器,以便在户外环境中轻松可靠地使用?
- 批准号:
132419 - 财政年份:2016
- 资助金额:
$ 42.08万 - 项目类别:
Feasibility Studies
Robust and Efficient High Order Methods for Time Dependent Problems
针对瞬态问题的稳健且高效的高阶方法
- 批准号:
1522593 - 财政年份:2015
- 资助金额:
$ 42.08万 - 项目类别:
Continuing Grant