Numerical Methods for Nonlocal Models with Applications to Multiscale and Nonlinear Systems

非局部模型的数值方法及其在多尺度和非线性系统中的应用

基本信息

  • 批准号:
    2111608
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Partial differential equations form an integral part of modern sciences. However, they have limitations as models for our increasingly connected world as well as for extreme and anomalous events such as financial crisis, material failures, and disease outbreaks. Other nonlocal equations in contrast are useful for models of traffic flow, epidemics, materials with defects, population and flocking dynamics, and finance, as well as for image and data analysis. This project develops systematic mathematical frameworks with efficient and reliable numerical methods for nonlocal models with applications to several important multiscale and nonlinear systems of importance in modern sciences and society. Students will be involved and trained in interdisciplinary research. The project comprises three sub-projects. The first is concerned with the important issue of designing efficient numerical algorithms for systems formulated on unbounded domains. The project will use an approach of a reflectionless perfectly matched layer for nonlocal wave equations; rigorous numerical studies will be conducted and a systematic understanding of the discrete and continuous perfectly matched layers for nonlocal waves will be provided. The second sub-project aims at developing asymptotically compatible finite element schemes for non-self-adjoint and nonlinear systems; the project will develop new theories for singular perturbed nonlocal convection-dominated diffusion problems and semi-linear nonlocal problems that are crucial for the robust simulation of parametrized nonlocal models. The third sub-project aims at providing easily implementable positivity-preserving meshfree finite difference discretization for a class of nonlocal operators; the project will tackle stability issues while maintaining the positivity-preserving properties and other advantages of meshfree methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
偏微分方程是现代科学的一个组成部分。然而,它们作为我们日益联系的世界以及极端和异常事件(如金融危机,材料故障和疾病爆发)的模型存在局限性。相比之下,其他非局部方程对交通流、流行病、有缺陷的材料、人口和群集动力学、金融以及图像和数据分析的模型都很有用。该项目开发了系统的数学框架,为非局部模型提供了有效和可靠的数值方法,并应用于现代科学和社会中几个重要的多尺度和非线性系统。学生将参与并接受跨学科研究的培训。 该项目包括三个分项目。第一个是关于设计有效的数值算法的系统制定无界域的重要问题。该项目将采用无反射完全匹配层的方法处理非局部波方程;将进行严格的数值研究,并将提供对非局部波的离散和连续完全匹配层的系统了解。第二个子项目旨在为非自伴和非线性系统开发渐近相容的有限元格式;该项目将为奇异扰动非局部对流主导扩散问题和半线性非局部问题开发新的理论,这些问题对于参数化非局部模型的鲁棒模拟至关重要。第三个子项目旨在为一类非局部算子提供易于实现的保正无网格有限差分离散;该项目将解决稳定性问题,同时保持保正属性和无网格方法的其他优点。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient optimization-based quadrature for variational discretization of nonlocal problems
  • DOI:
    10.1016/j.cma.2022.115104
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Pasetto;Zhaoxiang Shen;M. D'Elia;Xiaochuan Tian;Nathaniel Trask;D. Kamensky
  • 通讯作者:
    M. Pasetto;Zhaoxiang Shen;M. D'Elia;Xiaochuan Tian;Nathaniel Trask;D. Kamensky
An asymptotically compatible probabilistic collocation method for randomly heterogeneous nonlocal problems
随机异构非局部问题的渐近相容概率配置方法
  • DOI:
    10.1016/j.jcp.2022.111376
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Fan, Yiming;Tian, Xiaochuan;Yang, Xiu;Li, Xingjie;Webster, Clayton;Yu, Yue
  • 通讯作者:
    Yu, Yue
Fractional Hardy-type and trace theorems for nonlocal function spaces with heterogeneous localization
具有异质局域性的非局部函数空间的分数次 Hardy 型和迹定理
  • DOI:
    10.1142/s0219530521500329
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Du, Qiang;Mengesha, Tadele;Tian, Xiaochuan
  • 通讯作者:
    Tian, Xiaochuan
A Petrov-Galerkin method for nonlocal convection-dominated diffusion problems
求解非局部对流主导扩散问题的 Petrov-Galerkin 方法
  • DOI:
    10.1016/j.jcp.2021.110919
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Leng, Yu;Tian, Xiaochuan;Demkowicz, Leszek;Gomez, Hector;Foster, John T.
  • 通讯作者:
    Foster, John T.
Nonlocal trace spaces and extension results for nonlocal calculus
非局部微积分的非局部迹空间和扩展结果
  • DOI:
    10.1016/j.jfa.2022.109453
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Du, Qiang;Tian, Xiaochuan;Wright, Cory;Yu, Yue
  • 通讯作者:
    Yu, Yue
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaochuan Tian其他文献

A Class of High Order Nonlocal Operators
一类高阶非局部算子
Asymptotically compatible reproducing kernel collocation and meshfree integration for the peridynamic Navier equation
  • DOI:
    10.1016/j.cma.2020.113264
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yu Leng;Xiaochuan Tian;Nathaniel A. Trask;John T. Foster
  • 通讯作者:
    John T. Foster
$ L^{p} $ compactness criteria with an application to variational convergence of some nonlocal energy functionals
$ L^{p} $ 紧致性准则在某些非局部能量泛函的变分收敛中的应用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Q. Du;T. Mengesha;Xiaochuan Tian
  • 通讯作者:
    Xiaochuan Tian
The double adaptivity paradigm: (How to circumvent the discrete inf-sup conditions of Babuška and Brezzi)
双自适应范式:(如何规避 Babuška 和 Brezzi 的离散 inf-sup 条件)
The Conceptual Metaphor of Governance in The Governance of China
中国治理中的治理概念隐喻
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaochuan Tian;Yunhao Ba;Xinyu Zhang
  • 通讯作者:
    Xinyu Zhang

Xiaochuan Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaochuan Tian', 18)}}的其他基金

CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Mathematical Analysis and Numerical Methods for Peridynamics and Nonlocal Models
近场动力学和非局部模型的数学分析和数值方法
  • 批准号:
    2044945
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Mathematical Analysis and Numerical Methods for Peridynamics and Nonlocal Models
近场动力学和非局部模型的数学分析和数值方法
  • 批准号:
    1819233
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
  • 批准号:
    2686844
  • 财政年份:
    2025
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
  • 批准号:
    DE240100316
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
  • 批准号:
    2907463
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
  • 批准号:
    2422291
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了