Mathematical Analysis and Numerical Methods for Peridynamics and Nonlocal Models

近场动力学和非局部模型的数学分析和数值方法

基本信息

  • 批准号:
    2044945
  • 负责人:
  • 金额:
    $ 5.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Improvements in computer technology are fueling the development of more realistic mathematical models for complex applications, including nonlocal models that are more realistic than conventional local models for studying various phenomena from physics and biology to materials and social sciences. An example is the peridynamics model, a spatially nonlocal mechanics theory, which has been successfully used to model material defects and predict dynamics of crack formation in various engineering applications. Although new nonlocal models have been gaining popularity in various applications, the study of mathematics behind them is still at the nascent stage, impeding the further development of computational tools. The goal of this project is to develop efficient and reliable numerical methods for simulating nonlocal models and establish related mathematical analysis as part of the rigorous validation and verification process. It aims to improve the effectiveness and robustness of nonlocal modeling while retaining modeling accuracy. On the educational side, this project will provide training to students in both mathematics and computational mechanics. This project aims to develop state-of-the-art multiscale modeling techniques to improve computational efficiency while retaining the accuracy of nonlocal models for predicting dynamic fractures, with new theoretical methodologies built to study the analytic properties of the models. Three specific methods of multiscale modeling will be addressed, in which the treatment of boundary traces and interfacial conditions plays pivotal roles. The first is the seamless coupling of nonlocal and local models via heterogeneous localization of nonlocal interactions at the interface. A novel nonlocal trace theorem is used to ensure the well-posedness of the coupling. The goal is to treat the interface as a free boundary based on the development of the solution. The second is a quasi-nonlocal coupling method inspired by the atomistic-to-continuum coupling method. It is aimed at building a bridge between the discrete atomistic model and continuous nonlocal model. The third is to design appropriate nonlocal boundary conditions to reduce the computational cost for problems on unbounded domains. A new notion of nonlocal Neumann boundary condition will be introduced, which will shed light on domain decomposition methods and the coupling of nonlocal models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机技术的进步推动了复杂应用中更真实的数学模型的发展,包括比传统局部模型更真实的非局部模型,用于研究从物理和生物到材料和社会科学的各种现象。一个例子是周向力学模型,空间非局部力学理论,它已成功地用于模拟材料缺陷和预测动态裂纹形成在各种工程应用。虽然新的非局部模型在各种应用中越来越受欢迎,但其背后的数学研究仍处于起步阶段,阻碍了计算工具的进一步发展。该项目的目标是开发有效和可靠的数值方法来模拟非局部模型,并建立相关的数学分析,作为严格的验证和验证过程的一部分。它旨在提高非局部建模的有效性和鲁棒性,同时保持建模精度。在教育方面,该项目将为学生提供数学和计算力学方面的培训。该项目旨在开发最先进的多尺度建模技术,以提高计算效率,同时保留预测动态裂缝的非局部模型的准确性,建立新的理论方法来研究模型的分析特性。 多尺度模拟的三种具体方法将被解决,其中边界痕迹和界面条件的处理起着关键作用。第一个是无缝耦合的非本地和本地模型通过异构本地化的非本地交互界面。一个新的非局部迹定理被用来确保适定性的耦合。目标是根据解决方案的开发将界面视为自由边界。第二种是准非局域耦合方法的灵感来自原子到连续耦合方法。它的目的是在离散原子模型和连续非局部模型之间架起一座桥梁。三是设计合适的非局部边界条件,以减少无界区域上问题的计算量。一个新的概念nonlocal Neumann边界条件将被引入,这将阐明区域分解方法和耦合nonlocal models.This award reflects NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiscale Modeling, Homogenization and Nonlocal Effects: Mathematical and Computational Issues
  • DOI:
    10.1090/conm/754/15175
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Q. Du;B. Engquist;Xiaochuan Tian
  • 通讯作者:
    Q. Du;B. Engquist;Xiaochuan Tian
Numerical methods for nonlocal and fractional models
  • DOI:
    10.1017/s096249292000001x
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    14.2
  • 作者:
    D'Elia, Marta;Du, Qiang;Zhou, Zhi
  • 通讯作者:
    Zhou, Zhi
A Physically Consistent, Flexible, and Efficient Strategy to Convert Local Boundary Conditions into Nonlocal Volume Constraints
  • DOI:
    10.1137/19m1266617
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. D'Elia;Xiaochuan Tian;Yue Yu
  • 通讯作者:
    M. D'Elia;Xiaochuan Tian;Yue Yu
Asymptotically compatible reproducing kernel collocation and meshfree integration for nonlocal diffusion
  • DOI:
    10.1137/19m1277801
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Leng;Xiaochuan Tian;Nathaniel Trask;J. Foster
  • 通讯作者:
    Y. Leng;Xiaochuan Tian;Nathaniel Trask;J. Foster
A Review of Local-to-Nonlocal Coupling Methods in Nonlocal Diffusion and Nonlocal Mechanics
  • DOI:
    10.1007/s42102-020-00038-7
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. D'Elia;X. Li;Pablo Seleson;Xiaochuan Tian;Yue Yu
  • 通讯作者:
    M. D'Elia;X. Li;Pablo Seleson;Xiaochuan Tian;Yue Yu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaochuan Tian其他文献

A Class of High Order Nonlocal Operators
一类高阶非局部算子
Asymptotically compatible reproducing kernel collocation and meshfree integration for the peridynamic Navier equation
  • DOI:
    10.1016/j.cma.2020.113264
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yu Leng;Xiaochuan Tian;Nathaniel A. Trask;John T. Foster
  • 通讯作者:
    John T. Foster
$ L^{p} $ compactness criteria with an application to variational convergence of some nonlocal energy functionals
$ L^{p} $ 紧致性准则在某些非局部能量泛函的变分收敛中的应用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Q. Du;T. Mengesha;Xiaochuan Tian
  • 通讯作者:
    Xiaochuan Tian
The double adaptivity paradigm: (How to circumvent the discrete inf-sup conditions of Babuška and Brezzi)
双自适应范式:(如何规避 Babuška 和 Brezzi 的离散 inf-sup 条件)
Compactness results for a Dirichlet energy of nonlocal gradient with applications
非局部梯度狄利克雷能量的紧致性结果及其应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaolong Han;T. Mengesha;Xiaochuan Tian
  • 通讯作者:
    Xiaochuan Tian

Xiaochuan Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaochuan Tian', 18)}}的其他基金

CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Continuing Grant
Numerical Methods for Nonlocal Models with Applications to Multiscale and Nonlinear Systems
非局部模型的数值方法及其在多尺度和非线性系统中的应用
  • 批准号:
    2111608
  • 财政年份:
    2021
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Standard Grant
Mathematical Analysis and Numerical Methods for Peridynamics and Nonlocal Models
近场动力学和非局部模型的数学分析和数值方法
  • 批准号:
    1819233
  • 财政年份:
    2018
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical and numerical analysis for quantum wave equations: from theory to applications
量子波动方程的数学和数值分析:从理论到应用
  • 批准号:
    RGPIN-2018-05321
  • 财政年份:
    2022
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and numerical analysis of Sobolev gradient flows appearing in interface and materials science
界面和材料科学中出现的索博列夫梯度流的数学和数值分析
  • 批准号:
    22K03425
  • 财政年份:
    2022
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical and numerical analysis for quantum wave equations: from theory to applications
量子波动方程的数学和数值分析:从理论到应用
  • 批准号:
    RGPIN-2018-05321
  • 财政年份:
    2021
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and Numerical Analysis of Asymptotically Compatible Discretization of Nonlocal Models
非局部模型渐近兼容离散化的数学和数值分析
  • 批准号:
    2012562
  • 财政年份:
    2020
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Continuing Grant
Pharmacometrics Modelling-Based Dose-Finding and Synthetic Control Arms Established Using Longitudinal Analyses - Numerical analysis - Mathematical sc
使用纵向分析建立基于药理学模型的剂量寻找和合成控制臂 - 数值分析 - 数学 sc
  • 批准号:
    2444835
  • 财政年份:
    2020
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Studentship
Mathematical and numerical analysis for quantum wave equations: from theory to applications
量子波动方程的数学和数值分析:从理论到应用
  • 批准号:
    RGPIN-2018-05321
  • 财政年份:
    2020
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and numerical analysis for quantum wave equations: from theory to applications
量子波动方程的数学和数值分析:从理论到应用
  • 批准号:
    RGPIN-2018-05321
  • 财政年份:
    2019
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modeling for local wind fields based on numerical analysis and data-driven modeling
基于数值分析和数据驱动建模的局地风场数学建模
  • 批准号:
    18K03408
  • 财政年份:
    2018
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Analysis and Numerical Methods for Peridynamics and Nonlocal Models
近场动力学和非局部模型的数学分析和数值方法
  • 批准号:
    1819233
  • 财政年份:
    2018
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Standard Grant
Mathematical and numerical analysis for quantum wave equations: from theory to applications
量子波动方程的数学和数值分析:从理论到应用
  • 批准号:
    RGPIN-2018-05321
  • 财政年份:
    2018
  • 资助金额:
    $ 5.84万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了