CIF: Small: Statistical Signal Processing of Social Networks with Behavioral Economics Constraints

CIF:小:具有行为经济学约束的社交网络的统计信号处理

基本信息

  • 批准号:
    2112457
  • 负责人:
  • 金额:
    $ 49.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Social networks are ubiquitous. There is strong motivation to understand important sociological phenomena in social networks by constructing novel engineering models, algorithms and analysis. This project contributes to fundamental research in understanding the interaction between statistical inference, human decision making and information flow in social networks. The research addresses three interrelated themes. The first theme develops novel algorithms for detecting a change in the strategies of human decision makers that share information over a social network, for example, identifying reactive behavior to viral content on Twitter. The second theme models and analyzes how humans interacting over a social network can result in sociological phenomena such as the glass-ceiling effect and segregation. The third theme studies efficient polling algorithms in large-scale social networks where only a fraction of nodes can be polled to determine their decisions. For example, which nodes should be polled to achieve a statistically accurate estimate of sociological phenomena such as the emergence of the glass-ceiling effect? The theoretical claims and findings in this project will be validated via extensive analysis of real-world social network datasets.This project develops novel engineering models, algorithms and analysis to understand the interaction between statistical signal processing, behavioral economics (human decision making) and network science (information flow in social networks). The project conducts fundamental research in three interrelated themes. The first theme studies multi-agent information fusion and change detection with behavioral economics constraints (anticipatory decision making and rational inattention); the goal is to understand how information fusion is achieved among human decision makers. The second theme investigates how sophisticated agents interacting over a social network give rise to the important sociological phenomena of the glass-ceiling effect and segregation. The glass-ceiling effect refers to the barrier that keeps certain groups from rising to influential positions in society, regardless of their qualifications. In a social-network context, the investigator explores how individual traits like preferential attachment and homophily leads to the glass-ceiling effect. The third theme studies the design of statistically efficient network polling algorithms. In large-scale social networks, only a fraction of nodes can be polled to determine their decisions. Which nodes should be polled to achieve a statistically accurate estimate of sociological phenomena such as the glass-ceiling effect? Some nodes may be reluctant to reveal their true opinion. This may lead to incorrect polling estimates. How can this be compensated for? The theoretical claims and findings in this project will be validated via extensive analysis of real-world social-network datasets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交网络无处不在。通过构建新颖的工程模型,算法和分析,可以在社交网络中理解重要的社会学现象。 该项目有助于了解社交网络中统计推断,人类决策和信息流之间的相互作用的基本研究。该研究涉及三个相互关联的主题。第一个主题开发了新的算法,用于检测人类决策者的策略的变化,这些算法通过社交网络共享信息,例如,在Twitter上识别反应性行为。 第二个主题模型并分析了人类如何通过社交网络进行互动会导致社会学现象,例如玻璃天花板效应和隔离。 第三个主题研究有效的大规模社交网络中的民意测验算法可以进行轮询以确定其决定。例如,应该对哪些节点进行轮询以实现对社会学现象的统计准确估计,例如玻璃天花板效应的出现? 该项目中的理论主张和发现将通过对现实世界社交网络数据集的广泛分析来验证。本项目开发了新颖的工程模型,算法和分析,以了解统计信号处理,行为经济学(人类决策)和网络科学(社交网络中的信息流)之间的相互作用。该项目以三个相互关联的主题进行基础研究。 第一个主题研究多代理信息融合和变更检测与行为经济学的限制(预期决策和理性的注意力不集中);目的是了解人类决策者如何实现信息融合。第二个主题调查了在社交网络上相互作用的成熟代理如何产生玻璃天花板效应和隔离的重要社会学现象。玻璃天花板效应是指使某些群体从上升到社会中有影响力的立场的障碍,无论其资格如何。在社会网络的背景下,研究人员探讨了诸如优先依恋和同质性诸如玻璃天花板效应之类的单个特征。 第三个主题研究了统计高效的网络轮询算法的设计。在大规模的社交网络中,只能将一小部分节点进行轮询以确定其决定。应该对哪些节点进行轮询以实现对社会学现象(例如玻璃天花板效应)的统计准确估计?一些节点可能不愿透露他们的真实意见。这可能会导致不正确的投票估算。如何补偿? 该项目中的理论主张和调查结果将通过对现实世界社会网络数据集的广泛分析来验证。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准通过评估来获得支持的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lyapunov based Stochastic Stability of Human-Machine Interaction: A Quantum Decision System Approach
基于李雅普诺夫的人机交互随机稳定性:一种量子决策系统方法
Adaptive Filtering Algorithms For Set-Valued Observations-Symmetric Measurement Approach To Unlabeled And Anonymized Data
集值观测的自适应过滤算法-未标记和匿名数据的对称测量方法
  • DOI:
    10.1109/icassp49357.2023.10094833
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Krishnamurthy, Vikram
  • 通讯作者:
    Krishnamurthy, Vikram
Inverse-Inverse Reinforcement Learning. How to Hide Strategy from an Adversarial Inverse Reinforcement Learner
Echo Chambers and Segregation in Social Networks: Markov Bridge Models and Estimation
Quickest Change Detection using Time Inconsistent Anticipatory and Quantum Decision Modeling
使用时间不一致的预期和量子决策模型进行最快的变化检测
  • DOI:
    10.1109/allerton49937.2022.9929427
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Krishnamurthy, Vikram;Snow, Luke
  • 通讯作者:
    Snow, Luke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vikram Krishnamurthy其他文献

Large Deviations Analysis For Regret Minimizing Stochastic Approximation Algorithms
遗憾最小化随机逼近算法的大偏差分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongjiang Qian;Vikram Krishnamurthy
  • 通讯作者:
    Vikram Krishnamurthy
Adaptive step size blind multi-user detection
自适应步长盲多用户检测
A multicenter evaluation of near-infrared autofluorescence imaging of parathyroid glands in thyroid and parathyroid surgery
  • DOI:
    10.1016/j.surg.2022.07.057
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ludovico Sehnem;Salem I. Noureldine;Seyma Avci;Gizem Isiktas;Mohammed Elshamy;Yoshiyuki Saito;Amr H.A. Ahmed;Hien T. Tierney;Lily N. Trinh;Amanda Silver Karcioglu;Anthony Y. Cheung;Michael Otremba;Vikram Krishnamurthy;Katherine Heiden;Judy Jin;Joyce Shin;Allan Siperstein;Mark Zafereo;Ralph P. Tufano;Gregory W. Randolph
  • 通讯作者:
    Gregory W. Randolph
Network-Enabled Missile Deflection: Games and Correlation Equilibrium
网络导弹偏转:博弈和相关均衡
Fréchet Statistics Based Change Point Detection in Multivariate Hawkes Process
多元霍克斯过程中基于 Fréchet 统计的变化点检测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui Luo;Vikram Krishnamurthy
  • 通讯作者:
    Vikram Krishnamurthy

Vikram Krishnamurthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vikram Krishnamurthy', 18)}}的其他基金

CIF: Small: Inverse Reinforcement Learning for Cognitive Sensing
CIF:小:认知感知的逆强化学习
  • 批准号:
    2312198
  • 财政年份:
    2023
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant
CIF: Small: Controlled Sensing with Social Learning
CIF:小型:通过社交学习控制传感
  • 批准号:
    1714180
  • 财政年份:
    2017
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Hilbert-Huang变换及小波统计模型的遥感图像噪声消除方法研究
  • 批准号:
    12171054
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于广义相依删失数据小波估计的构建与统计推断
  • 批准号:
    12161075
  • 批准年份:
    2021
  • 资助金额:
    33.00 万元
  • 项目类别:
    地区科学基金项目
小空间尺度下‘零膨胀’时空数据的统计建模
  • 批准号:
    41801312
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
雷诺数效应对小尺度湍流影响的实验研究
  • 批准号:
    11702074
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
海量数据小训练样本集环境下的2D+3D人脸表情融合识别研究
  • 批准号:
    U1736123
  • 批准年份:
    2017
  • 资助金额:
    70.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308446
  • 财政年份:
    2023
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant
CIF: Small: New Directions in Clustering: Interactive Algorithms and Statistical Models
CIF:小型:聚类的新方向:交互式算法和统计模型
  • 批准号:
    2133484
  • 财政年份:
    2021
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant
CIF: Small: Statistical Learning Methods for Communications, Sensing and Control in Actuated Wireless Networks
CIF:小型:驱动无线网络中通信、传感和控制的统计学习方法
  • 批准号:
    2008927
  • 财政年份:
    2020
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant
CIF: Small: Resource-Efficient Statistical Inference in Networked Environments
CIF:小型:网络环境中资源高效的统计推断
  • 批准号:
    2007911
  • 财政年份:
    2020
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了