Collaborative Research: Learning and Distributional Feedback Control for Fabrication of Advanced Materials

合作研究:先进材料制造的学习和分布反馈控制

基本信息

  • 批准号:
    2112755
  • 负责人:
  • 金额:
    $ 29.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This grant will support research that will advance the scientific knowledge as well as the design of algorithms to enable the fabrication of advanced materials. This will in turn catalyze scalable and economically viable precision manufacturing contributing to the advancement of technology, and national prosperity. Scalable and cost-effective manufacturing of advanced materials with desired quality increasingly relies on the ability to predict and control processes at the molecular scale. Examples of such molecular processes include self-assembly processes that are central to the manufacturing of materials that have unique optical, electrical, and mechanical properties with up to subnanometer precision, or nucleation and growth processes in defect-free manufacturing of multi-layer films. While model-based control of molecular processes is well-recognized for enabling fabrication of advanced materials, existing approaches may not be amenable to real-time implementations with modest computational resources, especially given the fast and uncertain dynamics of the molecular processes. Thus, there remains a critical need to achieve fast non-equilibrium shaping of the distribution of state variables governing molecular processes, towards defect-free and scalable manufacturing of advanced materials. The physics-based online learning and feedback control framework, grounded on recent theoretical and algorithmic breakthroughs in stochastic control and machine learning, will enable optimal feedback control of the distributions of system states in real-time subject to the physical constraints. In addition to its far-reaching scientific impact cross-cutting machine learning, control and manufacturing, the project will also demonstrate the potential for precise control of distributions that will serve many emerging engineering applications--from controlling neuronal populations to swarm guidance and probabilistic motion planning. Besides fostering collaborative research between UC Santa Cruz and UC Berkeley, the research will lead to a multitude of educational and outreach activities.The project’s key scientific merit lies in bringing innovative systems-theoretic and learning-based distributional control approaches for molecular processes governed by multidimensional partial differential equation models that exhibit highly nonlinear and uncertain dynamics. The effort includes online learning of the complex dynamics of molecular processes and closing the loop with minimum energy optimal control of the population distribution over a finite time horizon via real-time feedback. Contrary to the existing state-of-the-art, the research will not make any parametric approximation of the dynamics or of the distributional shapes. Instead, it will exploit the structural properties of the underlying nonlinear equations for learning and online adaptation of the dynamic macroscopic features, and to synthesize feedback. The project will deliver computational benchmarks and an open source numerical toolbox to provide a quantitative demonstration of the improvements achieved over the existing state-of-the-art.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将支持研究,这将促进科学知识以及算法的设计,使先进材料的制造。这将反过来促进可扩展和经济上可行的精密制造,促进技术进步和国家繁荣。具有所需质量的先进材料的可扩展和具有成本效益的制造越来越依赖于在分子尺度上预测和控制过程的能力。这样的分子过程的实例包括自组装过程,其对于具有独特的光学、电学和机械性质的材料的制造是核心的,具有高达亚纳米精度,或者在多层膜的无缺陷制造中的成核和生长过程。虽然分子过程的基于模型的控制被公认为能够制造先进材料,但现有的方法可能不适合于具有适度计算资源的实时实现,特别是考虑到分子过程的快速和不确定的动力学。因此,仍然迫切需要实现控制分子过程的状态变量的分布的快速非平衡成形,以实现先进材料的无缺陷和可扩展的制造。基于物理学的在线学习和反馈控制框架,基于随机控制和机器学习的最新理论和算法突破,将使系统状态分布的实时最优反馈控制受到物理约束。除了其在机器学习、控制和制造领域的深远科学影响外,该项目还将展示精确控制分布的潜力,这些分布将服务于许多新兴的工程应用--从控制神经元群体到群体制导和概率运动规划。除了促进加州大学圣克鲁斯分校和加州大学伯克利分校之间的合作研究外,该研究还将导致大量的教育和推广活动。该项目的主要科学价值在于为表现出高度非线性和不确定动力学的多维偏微分方程模型所支配的分子过程带来创新的系统理论和基于学习的分布式控制方法。这项工作包括在线学习分子过程的复杂动力学,并通过实时反馈在有限时间范围内对种群分布进行最小能量最优控制。与现有的最先进的,研究将不会作出任何参数近似的动态或分布形状。相反,它将利用底层非线性方程的结构特性来学习和在线适应动态宏观特征,并合成反馈。该项目将提供计算基准和开源数值工具箱,以提供对现有最先进技术的改进的定量演示。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Physics-informed Deep Learning Approach for Minimum Effort Stochastic Control of Colloidal Self-Assembly
一种基于物理的深度学习方法,用于胶体自组装的最小努力随机控制
  • DOI:
    10.23919/acc55779.2023.10156176
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nodozi, Iman;O’Leary, Jared;Mesbah, Ali;Halder, Abhishek
  • 通讯作者:
    Halder, Abhishek
A Controlled Mean Field Model for Chiplet Population Dynamics
小芯片群动态的受控平均场模型
  • DOI:
    10.1109/lcsys.2023.3282174
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Nodozi, Iman;Halder, Abhishek;Matei, Ion
  • 通讯作者:
    Matei, Ion
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abhishek Halder其他文献

Solution of the Probabilistic Lambert Problem: Connections with Optimal Mass Transport, Schrödinger Bridge and Reaction-Diffusion PDEs
概率兰伯特问题的解决方案:与最优传质、薛定谔桥和反应扩散偏微分方程的联系
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexis M. H. Teter;Iman Nodozi;Abhishek Halder
  • 通讯作者:
    Abhishek Halder
Path Structured Multimarginal Schrödinger Bridge for Probabilistic Learning of Hardware Resource Usage by Control Software
用于控制软件硬件资源使用概率学习的路径结构多边际薛定谔桥
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Georgiy A. Bondar;Robert Gifford;L. T. Phan;Abhishek Halder
  • 通讯作者:
    Abhishek Halder
On the Contraction Coefficient of the Schrödinger Bridge for Stochastic Linear Systems
随机线性系统薛定谔电桥的收缩系数
  • DOI:
    10.1109/lcsys.2023.3326836
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Alexis M. H. Teter;Yongxin Chen;Abhishek Halder
  • 通讯作者:
    Abhishek Halder
Trans-temporal trans-choroidal resection of thalamic and thalamopeduncular tumors: how I do it
  • DOI:
    10.1007/s00701-024-06175-y
  • 发表时间:
    2024-07-05
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Soumen Kanjilal;Kamlesh Singh Bhaisora;Ved Prakash Maurya;Abhishek Halder;Ashutosh Kumar;Arun Kumar Srivastava
  • 通讯作者:
    Arun Kumar Srivastava

Abhishek Halder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abhishek Halder', 18)}}的其他基金

AMPS: Optimal Transport Algorithms for Stochastic Uncertainty Management in Modern Power Systems
AMPS:现代电力系统中随机不确定性管理的最优传输算法
  • 批准号:
    1923278
  • 财政年份:
    2019
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
  • 批准号:
    2330154
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了