Non-Equilibrium Steady States and Dynamics in a Tapped-Ion Quantum Simulator with Engineered Dissipation

具有工程耗散的抽头离子量子模拟器中的非平衡稳态和动态

基本信息

  • 批准号:
    2112893
  • 负责人:
  • 金额:
    $ 35.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Quantum simulation has become a promising technology for exploring and solving hard scientific, engineering, and computational problems. So far, most quantum simulation experiments are focused on simulating quantum systems that do not interact with their environment. A major challenge in developing future quantum technologies is to address the inevitable coupling between the quantum system and its environment that often leads to unwanted decoherence of the system. A promising way to overcome this challenge is to fight natural dissipation with engineered dissipation. The main goal of this project is to find combinations of dissipation and interaction that can lead to new physical discoveries, or facilitate quantum information processing tasks, such as the generation of useful entangled states. The group will focus this project on a particular experimental platform that uses trapped ions, which is a leading platform for both quantum simulation and quantum computing. This project will also facilitate the education of a new generation of students with expertise in quantum technologies via a combined effort in undergraduate student research, the development of a new quantum engineering program, public quantum lectures to local high-school and community-college students, and an online project for providing STEM-oriented users a visually attractive and interactive platform for demonstrating quantum simulation with trapped ions.Technically, this project aims to both advance the theoretical understanding of non-equilibrium steady states and dynamics in open quantum systems with long-range interactions and guide near-future trapped-ion experiments in engineering dissipation for achieving novel dynamics, phase transitions, and state preparation. The proposed research will also be relevant to other experimental platforms, including polar molecules, circuit QED, and atoms coupled to multi-mode cavities. Thus it serves as a critical bridge between the experimental and theoretical communities working on open quantum many-body systems. The group will study four closely related topics: (1) Locality and its breakdown for systems with long-range interactions and local or nonlocal dissipation; (2) Steady-state phases and phase transitions for long-range interacting spins; (3) Preparation of many-body entangled states and thermal states via engineered dissipation; (4) Fighting against natural dissipation on trapped-ion qubits with engineered dissipation. Importantly, the group will also propose practical experimental setups for trapped-ion experimentalists, including two groups who are close collaborators, to investigate novel physics discovered under each topic.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子模拟已经成为探索和解决科学、工程和计算难题的一种很有前途的技术。到目前为止,大多数量子模拟实验都集中在模拟不与环境相互作用的量子系统上。发展未来量子技术的一个主要挑战是解决量子系统与其环境之间不可避免的耦合,这种耦合通常会导致系统产生不必要的退相干。克服这一挑战的一个有希望的方法是用工程耗散来对抗自然耗散。这个项目的主要目标是找到耗散和相互作用的组合,可以导致新的物理发现,或促进量子信息处理任务,如产生有用的纠缠态。该小组将把这个项目集中在一个使用捕获离子的特定实验平台上,这是量子模拟和量子计算的领先平台。该项目还将通过以下方式促进新一代量子技术专业学生的教育:本科生研究、新量子工程项目的开发、面向当地高中和社区大学学生的公开量子讲座,以及一个在线项目,为面向stem的用户提供一个视觉上有吸引力的互动平台,用于演示捕获离子的量子模拟。从技术上讲,该项目旨在推进对具有远程相互作用的开放量子系统中非平衡稳态和动力学的理论理解,并指导近期工程耗散中的捕获离子实验,以实现新的动力学,相变和状态制备。所提出的研究也将与其他实验平台相关,包括极性分子,电路QED和原子耦合到多模腔。因此,它作为开放量子多体系统的实验和理论社区之间的重要桥梁。该小组将研究四个密切相关的主题:(1)具有长程相互作用和局部或非局部耗散的系统的局部性及其击穿;(2)远距离相互作用自旋的稳态相和相变;(3)通过工程耗散制备多体纠缠态和热态;(4)利用工程耗散对抗捕获离子量子比特的自然耗散。重要的是,该小组还将为捕获离子实验家提出实用的实验装置,包括两个密切合作的小组,以研究在每个主题下发现的新物理。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid Quantum-Classical Stochastic Approach to Spin-Boson Models
自旋玻色子模型的混合量子经典随机方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naushad A. Kamar, Mohammad Maghrebi
  • 通讯作者:
    Naushad A. Kamar, Mohammad Maghrebi
Continuous symmetry breaking in a trapped-ion spin chain
俘获离子自旋链中的连续对称性破缺
  • DOI:
    10.1038/s41586-023-06656-7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Feng, Lei;Katz, Or;Haack, Casey;Maghrebi, Mohammad;Gorshkov, Alexey V.;Gong, Zhexuan;Cetina, Marko;Monroe, Christopher
  • 通讯作者:
    Monroe, Christopher
Quantum state tomography with tensor train cross approximation
具有张量列交叉近似的量子态断层扫描
  • DOI:
    10.48550/arxiv.2207.06397
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Lidiak;Casey Jameson;Zhen Qin;Gongguo Tang;Michael B. Wakin;Zhihui Zhu;Zhexuan Gong
  • 通讯作者:
    Zhexuan Gong
Non-equilibrium critical scaling and universality in a quantum simulator
  • DOI:
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. De;P. Cook;K. Collins;W. Morong;D. Paz;P. Titum;G. Pagano;A. V. Gorshkov;M. Maghrebi;C. Monroe
  • 通讯作者:
    A. De;P. Cook;K. Collins;W. Morong;D. Paz;P. Titum;G. Pagano;A. V. Gorshkov;M. Maghrebi;C. Monroe
Error Analysis of Tensor-Train Cross Approximation
  • DOI:
    10.48550/arxiv.2207.04327
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhen Qin;Alexander Lidiak;Zhexuan Gong;Gongguo Tang;M. Wakin;Zhihui Zhu
  • 通讯作者:
    Zhen Qin;Alexander Lidiak;Zhexuan Gong;Gongguo Tang;M. Wakin;Zhihui Zhu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhexuan Gong其他文献

Lieb-Robinson bounds on n-partite connected correlation functions.
Lieb-Robinson 在 n 部分连通相关函数上有界。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minh C. Tran;J. Garrison;Zhexuan Gong;A. Gorshkov
  • 通讯作者:
    A. Gorshkov
Simulating the Haldane phase in trapped-ion spins using optical fields
使用光场模拟捕获离子自旋中的霍尔丹相
  • DOI:
    10.1103/physreva.92.012334
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    I. Cohen;P. Richerme;Zhexuan Gong;C. Monroe;A. Retzker
  • 通讯作者:
    A. Retzker
Individual addressing in quantum computation through spatial refocusing
通过空间重新聚焦在量子计算中进行单独寻址
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Shen;Zhexuan Gong;L. Duan
  • 通讯作者:
    L. Duan
Demonstrating two-qubit gates at the quantum speed limit using superconducting qubits
使用超导量子位以量子速度极限演示两个量子位门
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joel A. Howard;Alexander Lidiak;Casey Jameson;Bora Basyildiz;Kyle Clark;T. Zhao;M. Bal;J. Long;D. Pappas;Meenakshi Singh;Zhexuan Gong
  • 通讯作者:
    Zhexuan Gong
Speed limits of two-qubit gates with qudits
具有 qudits 的双量子位门的速度限制
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bora Basyildiz;Casey Jameson;Zhexuan Gong
  • 通讯作者:
    Zhexuan Gong

Zhexuan Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhexuan Gong', 18)}}的其他基金

RAISE-TAQS: Entanglement and information in complex networks of qubits
RAISE-TAQS:复杂量子比特网络中的纠缠和信息
  • 批准号:
    1839232
  • 财政年份:
    2018
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Standard Grant

相似海外基金

Non-equilibrium steady states in chemical reaction networks
化学反应网络中的非平衡稳态
  • 批准号:
    551267-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 35.01万
  • 项目类别:
    University Undergraduate Student Research Awards
EPSRC-SFI: Non-Equilibrium Steady-States of Quantum many-body systems: uncovering universality and thermodynamics (QuamNESS)
EPSRC-SFI:量子多体系统的非平衡稳态:揭示普遍性和热力学 (QuamNESS)
  • 批准号:
    EP/T028106/1
  • 财政年份:
    2020
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Research Grant
EPSRC-SFI: Non-Equilibrium Steady-States of Quantum many-body systems: uncovering universality and thermodynamics (QuamNESS)
EPSRC-SFI:量子多体系统的非平衡稳态:揭示普遍性和热力学 (QuamNESS)
  • 批准号:
    EP/T028424/1
  • 财政年份:
    2020
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Research Grant
Typical state analysis of non-equilibrium steady states
非平衡稳态的典型状态分析
  • 批准号:
    18K13466
  • 财政年份:
    2018
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Steady-state non-equilibrium numerical renormalization group approach applied to molecular electronics
应用于分子电子学的稳态非平衡数值重正化群方法
  • 批准号:
    323777494
  • 财政年份:
    2016
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Research Grants
Models and Asymptotics of Non-equilibrium Steady States in Driven Diffusive Systems
驱动扩散系统中非平衡稳态的模型和渐近
  • 批准号:
    1212167
  • 财政年份:
    2012
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Standard Grant
A New Theoretical Approach for the Response and Statistical Law in the Non-Equilibrium Steady State of Granular Gas
颗粒气体非平衡稳态响应和统计规律的新理论方法
  • 批准号:
    19740236
  • 财政年份:
    2007
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Dynamical coarse graining for non-equilibrium steady states with stochastic dynamics (A07)
具有随机动力学的非平衡稳态的动态粗粒化 (A07)
  • 批准号:
    259429232
  • 财政年份:
  • 资助金额:
    $ 35.01万
  • 项目类别:
    CRC/Transregios
INTRAVENOUS DOSE-RESPONSE STUDY OF NON-EQUILIBRIUM AND STEADY-STATE GH
非平衡和稳态 GH 的静脉剂量反应研究
  • 批准号:
    3765659
  • 财政年份:
  • 资助金额:
    $ 35.01万
  • 项目类别:
INTRAVENOUS DOSE-RESPONSE STUDY OF NON-EQUILIBRIUM AND STEADY-STATE GH
非平衡和稳态 GH 的静脉剂量反应研究
  • 批准号:
    3787757
  • 财政年份:
  • 资助金额:
    $ 35.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了