Models and Asymptotics of Non-equilibrium Steady States in Driven Diffusive Systems
驱动扩散系统中非平衡稳态的模型和渐近
基本信息
- 批准号:1212167
- 负责人:
- 金额:$ 22.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will support the analysis of non-equilibrium steady states (NESS) in driven diffusive systems. Physical systems of interest in this general class are typically modeled either deterministically by diffusive nonlinear evolution equations or stochastically by certain types of Markov processes. The NESS referred to here differ from the equilibria of linear dynamics or the invariant measures of detailed balance in that the non-equilibrium steady states exhibit phase separation (often driven by boundary dynamics), spontaneous symmetry breaking and/or long range correlations away from critical transitions. Specific contexts to be explored include the strong bending regime of striped pattern formation, spatial random partitions, and random matrix ensembles. Non-equilibrium steady states are typical for a number of physical systems and models, including defect condensation in pattern forming systems driven far from threshold, classical molecule formation, a system of interacting Bose particles, shaken granular gasses, infinite allele models, network formation by preferential attachment or rewiring, stochastic growth models and two-dimensional quantum gravity. The award will support research approaches on the behavior of such systems that uses deterministic (non-random) as well as stochastic (random) techniques.
该奖项将支持驱动扩散系统的非平衡稳态(NESS)分析。在这一类中感兴趣的物理系统通常由扩散非线性演化方程确定地建模,或由某些类型的马尔可夫过程随机地建模。这里提到的NESS不同于线性动力学的平衡或详细平衡的不变测量,因为非平衡稳态表现出相分离(通常由边界动力学驱动),自发对称性破缺和/或远离临界跃迁的长距离相关性。要探讨的具体背景包括条纹模式形成的强弯曲机制、空间随机分区和随机矩阵集成。非平衡稳态是许多物理系统和模型的典型特征,包括远离阈值驱动的模式形成系统中的缺陷凝聚,经典分子形成,相互作用玻色粒子系统,振荡颗粒气体,无限等位基因模型,优先连接或重新布线的网络形成,随机生长模型和二维量子引力。该奖项将支持使用确定性(非随机)和随机(随机)技术的此类系统行为的研究方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Ercolani其他文献
Geometry of singularities for the steady Boussinesq equations
- DOI:
10.1007/bf01587949 - 发表时间:
1996-09-01 - 期刊:
- 影响因子:1.200
- 作者:
Russel E. Caflisch;Nicholas Ercolani;Gregory Steele - 通讯作者:
Gregory Steele
Nicholas Ercolani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Ercolani', 18)}}的其他基金
Random Structures and Integrable Systems: Analysis and Applications
随机结构与可积系统:分析与应用
- 批准号:
1615921 - 财政年份:2016
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Variational Theories for Defects and Patterns
缺陷和模式的变分理论
- 批准号:
0808059 - 财政年份:2008
- 资助金额:
$ 22.6万 - 项目类别:
Continuing Grant
Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
生物系统群体数学建模与分析会议
- 批准号:
0729519 - 财政年份:2007
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Program in Nonlinear Waves, Kinetic Theory and Hamiltonian Partial Differential Equations-Fields Institute, Spg 04
非线性波、运动理论和哈密顿偏微分方程项目-场研究所,Spg 04
- 批准号:
0352061 - 财政年份:2004
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Asymptotic Analysis of Variational and Hamiltonian PDEs
变分偏微分方程和哈密顿偏微分方程的渐近分析
- 批准号:
0412310 - 财政年份:2004
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
ITR/AP: Optimal Nonlinear Estimation in the Geosciences
ITR/AP:地球科学中的最优非线性估计
- 批准号:
0113649 - 财政年份:2001
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Topics in Pattern Formation Far From Threshold
远离阈值的模式形成主题
- 批准号:
0073087 - 财政年份:2000
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Workshop on Integrating Integrability into Mathematics and Science, October 29 - 31, 1999, Tuscon, Arizona
将可积性融入数学和科学研讨会,1999 年 10 月 29 日至 31 日,亚利桑那州图斯康
- 批准号:
9971765 - 财政年份:1999
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Models and Methods in Nonlinear Optics
数学科学:非线性光学中的几何模型和方法
- 批准号:
9626306 - 财政年份:1996
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Southwest Regional Workshop on New Directions in Dynamical Systems
西南地区动力系统新方向研讨会
- 批准号:
9523804 - 财政年份:1995
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
相似海外基金
Asymptotics in non-linear cointegrating regression: theory and applications
非线性协整回归中的渐近:理论与应用
- 批准号:
DP130102408 - 财政年份:2013
- 资助金额:
$ 22.6万 - 项目类别:
Discovery Projects
New asymptotics in non-linear quantum mechanics and shortwave diffraction
非线性量子力学和短波衍射中的新渐近论
- 批准号:
261412-2006 - 财政年份:2011
- 资助金额:
$ 22.6万 - 项目类别:
Discovery Grants Program - Individual
New asymptotics in non-linear quantum mechanics and shortwave diffraction
非线性量子力学和短波衍射中的新渐近论
- 批准号:
261412-2006 - 财政年份:2010
- 资助金额:
$ 22.6万 - 项目类别:
Discovery Grants Program - Individual
Non-autonomous set-valued dynamical processes: Asymptotics and applications
非自治集值动态过程:渐近学和应用
- 批准号:
169166715 - 财政年份:2010
- 资助金额:
$ 22.6万 - 项目类别:
Research Grants
Research of non-commutative geometry, singular point, and geometric asymptotics
非交换几何、奇点、几何渐进研究
- 批准号:
22540095 - 财政年份:2010
- 资助金额:
$ 22.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New asymptotics in non-linear quantum mechanics and shortwave diffraction
非线性量子力学和短波衍射中的新渐近论
- 批准号:
261412-2006 - 财政年份:2008
- 资助金额:
$ 22.6万 - 项目类别:
Discovery Grants Program - Individual
Analysis of Linear and Non-linear Wave Equations: Regularity, Asymptotics, and Blowup
线性和非线性波动方程的分析:正则性、渐近性和爆炸
- 批准号:
0701087 - 财政年份:2007
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
New asymptotics in non-linear quantum mechanics and shortwave diffraction
非线性量子力学和短波衍射中的新渐近论
- 批准号:
261412-2006 - 财政年份:2007
- 资助金额:
$ 22.6万 - 项目类别:
Discovery Grants Program - Individual
New Directions in Non-linear Mathematical Asymptotics
非线性数学渐进的新方向
- 批准号:
DP0664624 - 财政年份:2006
- 资助金额:
$ 22.6万 - 项目类别:
Discovery Projects
New asymptotics in non-linear quantum mechanics and shortwave diffraction
非线性量子力学和短波衍射中的新渐近论
- 批准号:
261412-2006 - 财政年份:2006
- 资助金额:
$ 22.6万 - 项目类别:
Discovery Grants Program - Individual