RAISE-TAQS: Entanglement and information in complex networks of qubits

RAISE-TAQS:复杂量子比特网络中的纠缠和信息

基本信息

  • 批准号:
    1839232
  • 负责人:
  • 金额:
    $ 98.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Quantum computers are now approaching a size that will soon perform tasks surpassing the power of today's fastest classical computers. To attain the full power of a quantum computer, qubits inside the quantum computer should be well connected with each other, so that information can be transferred, and entanglement can be generated between any two qubits as fast as possible. The qubit interactions will form a complex and time-varying network and their dynamics will be too complicated for classical computers to predict. This project will provide a key step in understanding quantum systems of a rapidly increasing level of complexity and find out how such complexity can be employed to massively speed up quantum computing over systems with sparse and simple qubit connections. The project will expand the fields of quantum information science and condensed matter physics into the territory of complexity science, via concrete ways to quantify complexity of quantum states. As the quantum information frontier is fostering a new technological revolution around the world, the project will train a new generation of undergraduate and graduate students with expertise in quantum technologies and develop a new 12-credit graduate certificate program in quantum engineering to accommodate the pressing need from industry professionals in obtaining quantum expertise.The first half of this project aims to find out how high qubit connectivity can be used to speed up quantum information processing, focusing on mathematical quantum speed limits akin to Lieb-Robinson bounds, optimal entangling protocols for very small or very large number of qubits, and experimental demonstrations of entangling speed limit using solid-state qubits. The second half of this project will focus on states created by Hamiltonians with dense and complex interactions, quantifying their complexity and understanding their entanglement structure. Various network measures borrowed from complexity science will be employed to study the experimentally measurable quantum mutual information network and the recently developed quantum neural network, in order to bring new insight to quantum critical phenomena, entanglement area laws, and nonequilibrium many-body dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算机现在的规模已接近其执行任务的规模,很快就会超越当今最快的经典计算机的能力。为了充分发挥量子计算机的能力,量子计算机内部的量子位应该相互良好连接,以便信息可以传输,并且任意两个量子位之间可以尽可能快地产生纠缠。量子位相互作用将形成一个复杂且随时间变化的网络,其动态将过于复杂,经典计算机无法预测。该项目将为理解复杂性迅速增加的量子系统迈出关键一步,并找出如何利用这种复杂性来大幅加速具有稀疏和简单量子位连接的系统的量子计算。该项目将通过量化量子态复杂性的具体方法,将量子信息科学和凝聚态物理领域扩展到复杂性科学领域。随着量子信息前沿正在全球范围内掀起一场新的技术革命,该项目将培养新一代具有量子技术专业知识的本科生和研究生,并开发一个新的12学分的量子工程研究生证书课程,以满足行业专业人士获得量子专业知识的迫切需求。该项目的前半部分旨在找出如何利用高量子位连接来加速量子信息处理,重点关注数学 类似于李布-罗宾逊界限的量子速度限制、非常小或非常大量量子位的最佳纠缠协议,以及使用固态量子位的纠缠速度限制的实验演示。该项目的后半部分将重点关注由哈密顿量创建的具有密集和复杂相互作用的状态,量化它们的复杂性并理解它们的纠缠结构。借鉴复杂性科学的各种网络措施将用于研究可实验测量的量子互信息网络和最近发展的量子神经网络,以便为量子临界现象、纠缠区域定律和非平衡多体动力学带来新的见解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics for the Haldane phase in the bilinear-biquadratic model
双线性双二次模型中 Haldane 相的动力学
  • DOI:
    10.1103/physrevb.105.094309
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Dhar, Arya;Jaschke, Daniel;Carr, Lincoln D.
  • 通讯作者:
    Carr, Lincoln D.
Response of quantum spin networks to attacks
  • DOI:
    10.1088/2632-072x/abf5c2
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhuvanesh Sundar;M. Walschaers;V. Parigi;L. Carr
  • 通讯作者:
    Bhuvanesh Sundar;M. Walschaers;V. Parigi;L. Carr
Error Analysis of Tensor-Train Cross Approximation
  • DOI:
    10.48550/arxiv.2207.04327
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhen Qin;Alexander Lidiak;Zhexuan Gong;Gongguo Tang;M. Wakin;Zhihui Zhu
  • 通讯作者:
    Zhen Qin;Alexander Lidiak;Zhexuan Gong;Gongguo Tang;M. Wakin;Zhihui Zhu
Implementing two-qubit gates at the quantum speed limit
以量子速度极限实现两个量子位门
  • DOI:
    10.1103/physrevresearch.5.043194
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Howard, Joel;Lidiak, Alexander;Jameson, Casey;Basyildiz, Bora;Clark, Kyle;Zhao, Tongyu;Bal, Mustafa;Long, Junling;Pappas, David P.;Singh, Meenakshi
  • 通讯作者:
    Singh, Meenakshi
A universal quantum gate set for transmon qubits with strong ZZ interactions
  • DOI:
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Long;T. Zhao;M. Bal;R. Zhao;George S. Barron;H. Ku;Joel A. Howard;Xian Wu;C. McRae;Xiu-Hao Deng;G. Ribeill;Meenakshi Singh;T. Ohki;Edwin Barnes;S. Economou;D. Pappas
  • 通讯作者:
    J. Long;T. Zhao;M. Bal;R. Zhao;George S. Barron;H. Ku;Joel A. Howard;Xian Wu;C. McRae;Xiu-Hao Deng;G. Ribeill;Meenakshi Singh;T. Ohki;Edwin Barnes;S. Economou;D. Pappas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhexuan Gong其他文献

Lieb-Robinson bounds on n-partite connected correlation functions.
Lieb-Robinson 在 n 部分连通相关函数上有界。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minh C. Tran;J. Garrison;Zhexuan Gong;A. Gorshkov
  • 通讯作者:
    A. Gorshkov
Simulating the Haldane phase in trapped-ion spins using optical fields
使用光场模拟捕获离子自旋中的霍尔丹相
  • DOI:
    10.1103/physreva.92.012334
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    I. Cohen;P. Richerme;Zhexuan Gong;C. Monroe;A. Retzker
  • 通讯作者:
    A. Retzker
Individual addressing in quantum computation through spatial refocusing
通过空间重新聚焦在量子计算中进行单独寻址
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Shen;Zhexuan Gong;L. Duan
  • 通讯作者:
    L. Duan
Demonstrating two-qubit gates at the quantum speed limit using superconducting qubits
使用超导量子位以量子速度极限演示两个量子位门
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joel A. Howard;Alexander Lidiak;Casey Jameson;Bora Basyildiz;Kyle Clark;T. Zhao;M. Bal;J. Long;D. Pappas;Meenakshi Singh;Zhexuan Gong
  • 通讯作者:
    Zhexuan Gong
Speed limits of two-qubit gates with qudits
具有 qudits 的双量子位门的速度限制
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bora Basyildiz;Casey Jameson;Zhexuan Gong
  • 通讯作者:
    Zhexuan Gong

Zhexuan Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhexuan Gong', 18)}}的其他基金

Non-Equilibrium Steady States and Dynamics in a Tapped-Ion Quantum Simulator with Engineered Dissipation
具有工程耗散的抽头离子量子模拟器中的非平衡稳态和动态
  • 批准号:
    2112893
  • 财政年份:
    2021
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Continuing Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 98.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了