Modelling Covariance Structure Randomly, with Applications in Bootstrapping, Robust Statistics, and Deep Learning
随机建模协方差结构,在引导、稳健统计和深度学习中的应用
基本信息
- 批准号:2113489
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
High dimensional data with random covariance structure arises naturally in many fields, ranging from genetics and epidemiology to atmospheric and environmental sciences, medical sciences, social sciences and artificial intelligence. A thorough understanding of these large data matrices is in urgent demand in the era of Big Data. However, the current literature has mostly focused on the case when the population covariance matrix is deterministic. This project will change this by establishing novel results for data matrices with random population covariance structure. The research findings will demonstrate how the random covariance structure can help to enhance the understanding of complex and massive data sets. Moreover, this project will result in novel and better modeling and tools for analyzing high dimensional noisy data sets, which can provide more meaningful and interpretable information.This project aims to study a general class of large dimensional matrices with random population covariance structure and address several challenges in high dimensional statistics and deep learning. It is the first time that the intersection between random matrix theory and extreme value theory is studied in full generality. The goals include: (1). Establishing novel theory and results for the top eigenvalues and principal components of large dimensional sample or separable covariance matrix with random covariance structure; (2). Answering the question whether bootstrapping is suitable for high dimensional inference, and how we can modify the standard bootstrapping procedure when it fails for massive data; (3). Constructing new statistics for statistical inference problems involving high dimensional elliptically distributed data in full generality, including heavy tailed data sets; (4). Providing novel insights on the phase transitions of fully connected two-layer neural networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有随机协方差结构的高维数据在许多领域中自然出现,从遗传学和流行病学到大气和环境科学,医学科学,社会科学和人工智能。在大数据时代,迫切需要对这些大数据矩阵进行透彻的理解。然而,目前的文献大多集中在人口协方差矩阵是确定性的情况下。该项目将通过建立具有随机总体协方差结构的数据矩阵的新结果来改变这一点。研究结果将展示随机协方差结构如何有助于增强对复杂和海量数据集的理解。此外,该项目将为高维噪声数据集的分析提供更好的建模和工具,从而提供更有意义和可解释的信息。该项目旨在研究一类具有随机总体协方差结构的高维矩阵,并解决高维统计和深度学习中的几个挑战。首次对随机矩阵理论与极值理论的交叉进行了全面的研究。 目标包括:(1). 对具有随机协方差结构的高维样本或可分离协方差矩阵的顶特征值和主成分建立了新的理论和结果;讨论了自举方法是否适用于高维推理,以及当标准的自举方法在海量数据中失效时如何改进;(3).构造新的统计量用于高维椭圆分布数据的统计推断问题,包括重尾数据集;(4)。为全连接双层神经网络的相变提供新的见解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The conjugate gradient algorithm on a general class of spiked covariance matrices
- DOI:10.1090/qam/1605
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Xiucai Ding;T. Trogdon
- 通讯作者:Xiucai Ding;T. Trogdon
STATISTICAL INFERENCE FOR PRINCIPAL COMPONENTS OF SPIKED COVARIANCE MATRICES
尖峰协方差矩阵主要成分的统计推断
- DOI:10.1214/21-aos2143
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:鲍志刚;XIUCAI DING;JINGMING WANG;KE WANG
- 通讯作者:KE WANG
Edge statistics of large dimensional deformed rectangular matrices
- DOI:10.1016/j.jmva.2022.105051
- 发表时间:2022-06-11
- 期刊:
- 影响因子:1.6
- 作者:Ding,Xiucai;Yang,Fan
- 通讯作者:Yang,Fan
Spiked multiplicative random matrices and principal components
- DOI:10.1016/j.spa.2023.05.009
- 发表时间:2023-02
- 期刊:
- 影响因子:1.4
- 作者:Xiucai Ding;H. Ji
- 通讯作者:Xiucai Ding;H. Ji
Tracy-Widom Distribution for Heterogeneous Gram Matrices With Applications in Signal Detection
- DOI:10.1109/tit.2022.3176784
- 发表时间:2020-08
- 期刊:
- 影响因子:2.5
- 作者:Xiucai Ding;F. Yang
- 通讯作者:Xiucai Ding;F. Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiucai Ding其他文献
Local laws for multiplication of random matrices
随机矩阵乘法的局部定律
- DOI:
10.1214/22-aap1882 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xiucai Ding;H. Ji - 通讯作者:
H. Ji
Introduce a rotational robust optimization framework for spot-scanning proton arc (SPArc) therapy
引入用于点扫描质子弧 (SPArc) 治疗的旋转鲁棒优化框架
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.5
- 作者:
Sheng Chang;Gang Liu;Lewei Zhao;Weli Zheng;D. Yan;Peter Y Chen;Xiangpan Li;R. Deraniyagala;C. Stevens;I. Grills;P. Chinnaiyan;Xiaoqiang Li;Xiucai Ding - 通讯作者:
Xiucai Ding
Tracy-Widom distribution for the edge eigenvalues of Gram type random matrices.
Gram 型随机矩阵的边缘特征值的 Tracy-Widom 分布。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xiucai Ding;Fan Yang - 通讯作者:
Fan Yang
Multivariate functional response low‐rank regression with an application to brain imaging data
多元功能反应低阶回归在脑成像数据中的应用
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xiucai Ding;Dengdeng Yu;Zhengwu Zhang;Dehan Kong - 通讯作者:
Dehan Kong
Orientation of the Geometrically Best fitting Triaxial Lunar Ellipsoid with Respect to the Mean Earth/Polar Axis Reference Frame
几何最佳拟合三轴月球椭球相对于平均地球/极轴参考系的方向
- DOI:
10.2478/v10156-010-0007-2 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
H. Iz;C. Shum;Xiucai Ding;C. Dai - 通讯作者:
C. Dai
Xiucai Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiucai Ding', 18)}}的其他基金
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306439 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
Charting the molecular structure of complex tissues using spatial covariance tensors
使用空间协方差张量绘制复杂组织的分子结构图
- 批准号:
442489549 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Research Fellowships
Covariance structure analysis of dynamic panel data models with a factor structure
具有因子结构的动态面板数据模型的协方差结构分析
- 批准号:
17KK0070 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Dynamic panel analysis based on covariance structure analysis
基于协方差结构分析的动态面板分析
- 批准号:
17K03660 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relationship among symptoms of developmental disorders and genetic and environmental risk factors based on covariance structure analysis
基于协方差结构分析的发育障碍症状与遗传和环境危险因素的关系
- 批准号:
17H04137 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Covariance structure analysis of bruxism during sleep or awakening, psychosocial factor and the TMD
睡眠或觉醒期间磨牙症、心理社会因素和TMD的协方差结构分析
- 批准号:
25462999 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of black soybean gels for a dysphagia diet by the covariance structure analysis
通过协方差结构分析评估黑豆凝胶治疗吞咽困难的效果
- 批准号:
23700891 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Covariance Structure Analysis on Increase of Residential Damage due to Super Typhoons
超强台风造成的住宅损坏增加的协方差结构分析
- 批准号:
19760390 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of covariance structure of the financial markets by use of high-frequency data
利用高频数据分析金融市场的协方差结构
- 批准号:
19530186 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Covariance structure analysis and model selection under diverse distributional, sample, and study conditions
不同分布、样本和研究条件下的协方差结构分析和模型选择
- 批准号:
293265-2004 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Covariance structure analysis and model selection under diverse distributional, sample, and study conditions
不同分布、样本和研究条件下的协方差结构分析和模型选择
- 批准号:
293265-2004 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual