Collaborative Research: Covariate-Driven Approaches to Network Estimation
协作研究:协变量驱动的网络估计方法
基本信息
- 批准号:2113557
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, the PIs will develop new statistical methods for estimating networks from scientific data. In statistical network inference, each node in the network corresponds to a variable, and each edge represents a dependence relation. The project will address challenging scenarios where a set of external covariates may influence either the values of the nodes within the network or the strength of the connections. The PIs will develop new Bayesian modeling approaches for learning both directed and undirected networks and their dependence on covariates, including methods that can handle data that are not normally distributed, and implement the proposed methods using efficient computational algorithms. The PIs will apply the developed statistical models to high-dimensional data, including functional brain imaging and microbiome profiling. This work is significant, as it will break new ground in Bayesian modeling and computation. The broader impacts of this project include the public sharing of software, training of graduate students, and the application of the methods to real-world neuroimaging and microbiome data.This project will break new ground in the simultaneous estimation of graphical models and covariate effects. The PIs will develop a framework to infer directed graphs based on vector autoregressive models for time series data and will develop a novel formulation where covariates may influence the strength of an edge in a non-linear fashion. This framework will allow the determination of how key covariates modulate network relations. The PIs will also develop Bayesian methods for the simultaneous selection of covariates and edges in an undirected graph, focusing on models for non-Gaussian data. They will implement these models using efficient Variational Inference approaches, enabling scalability to real-world applications. This project achieves innovation both in terms of the Bayesian modeling approaches and the computational methods employed to enable efficient inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个研究项目中,PI 将开发新的统计方法,用于根据科学数据估计网络。在统计网络推理中,网络中的每个节点对应一个变量,每条边代表一个依赖关系。该项目将解决具有挑战性的场景,其中一组外部协变量可能影响网络内节点的值或连接的强度。 PI 将开发新的贝叶斯建模方法,用于学习有向和无向网络及其对协变量的依赖性,包括可以处理非正态分布数据的方法,并使用高效的计算算法实现所提出的方法。 PI 将把开发的统计模型应用于高维数据,包括功能性脑成像和微生物组分析。这项工作意义重大,因为它将在贝叶斯建模和计算方面开辟新天地。该项目更广泛的影响包括软件的公开共享、研究生培训以及将这些方法应用于现实世界的神经成像和微生物组数据。该项目将在图模型和协变量效应的同时估计方面开辟新天地。 PI 将开发一个框架,以基于时间序列数据的向量自回归模型来推断有向图,并将开发一种新颖的公式,其中协变量可能以非线性方式影响边缘的强度。该框架将允许确定关键协变量如何调节网络关系。 PI 还将开发贝叶斯方法,用于同时选择无向图中的协变量和边,重点关注非高斯数据的模型。他们将使用高效的变分推理方法来实现这些模型,从而实现实际应用程序的可扩展性。该项目在贝叶斯建模方法和用于实现高效推理的计算方法方面都实现了创新。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Latent Network Estimation and Variable Selection for Compositional Data Via Variational EM
- DOI:10.1080/10618600.2021.1935971
- 发表时间:2021-07-16
- 期刊:
- 影响因子:2.4
- 作者:Osborne, Nathan;Peterson, Christine B.;Vannucci, Marina
- 通讯作者:Vannucci, Marina
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Peterson其他文献
Resident-faculty overnight discrepancy rates as a function of number of consecutive nights during a week of night float
住院医师过夜差异率与一周夜间浮动期间连续过夜次数的函数关系
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.5
- 作者:
Christine Peterson;Michael Moore;N. Sarwani;Éric Gagnon;Michael A. Bruno;S. Kanekar - 通讯作者:
S. Kanekar
Psychiatric aspects of adolescent pregnancy
- DOI:
10.1016/s0033-3182(82)73347-x - 发表时间:
1982-07-01 - 期刊:
- 影响因子:
- 作者:
Christine Peterson;Bhaskar Sripada;Peter Barglow - 通讯作者:
Peter Barglow
Optimization of SARS-CoV-2 detection by RT-QPCR without RNA extraction
无需提取 RNA 即可优化 RT-QPCR 检测 SARS-CoV-2
- DOI:
10.1101/2020.04.06.028902 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Natacha Mérindol;Geneviève Pépin;C. Marchand;Marylène Rheault;Christine Peterson;A. Poirier;H. Germain;Alexis Danylo - 通讯作者:
Alexis Danylo
3091: Predicting outcome of IROC’s thoracic moving dosimetry audit with random forest modeling.
3091:通过随机森林建模预测IROC的胸腔运动剂量审计的结果。
- DOI:
10.1016/s0167-8140(24)03157-8 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Hunter Mehrens;Andrea Molineu;Nickolas Pajot;Paola Alvarez;Paige Taylor;Laurence Court;Rebecca Howell;David Jaffray;Christine Peterson;Julianne Pollard-Larkin;Stephen Kry - 通讯作者:
Stephen Kry
A succinct rating scale for radiology report quality
放射学报告质量的简洁评定量表
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.3
- 作者:
Chengwu Yang;C. Kasales;Ouyang Tao;Christine Peterson;N. Sarwani;R. Tappouni;Michael A. Bruno - 通讯作者:
Michael A. Bruno
Christine Peterson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Peterson', 18)}}的其他基金
Collaborative Research: Bayesian Network Estimation across Multiple Sample Groups and Data Types
协作研究:跨多个样本组和数据类型的贝叶斯网络估计
- 批准号:
1811445 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Training Grant