Collaborative Research: Bayesian Network Estimation across Multiple Sample Groups and Data Types

协作研究:跨多个样本组和数据类型的贝叶斯网络估计

基本信息

项目摘要

As part of this collaborative research, the investigators will develop new statistical methods for the estimation of multiple graphical networks. The proposed research will address the challenge of learning networks when there is heterogeneity among both the subjects and the variables considered, breaking new ground in graphical modeling and Bayesian statistics. The methods developed will have the potential for significant impact in statistics and in applied fields in which problems of network estimation naturally arise. In particular, applications in neuroimaging will be explored. The project will include educational and training activities for graduate students. Findings will be disseminated to the research community and used to further interdisciplinary collaborative efforts. Software and code will be developed and deposited in public repositories.When all samples are collected under similar conditions or reflect a single type of disease, methods such as the graphical lasso or Bayesian network inference approaches can be applied to learn the underlying conditional dependence relations. In many studies, however, samples are obtained for different subtypes or disease, under varying experimental settings, or other heterogeneous conditions. The challenge becomes even more formidable when multiple data types are under consideration. This project will focus on the development of Bayesian methods to learn networks for a single data type across multiple sample groups using an approach that both links edge values across groups, and flexibly models which groups are most similar. Methods will also be extended to a hierarchical modeling framework of networks from both heterogeneous sets of subjects and heterogeneous data types.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为这项合作研究的一部分,研究人员将开发新的统计方法来估计多个图形网络。该研究将解决学习网络的挑战,当被考虑的对象和变量之间存在异质性时,在图形建模和贝叶斯统计方面开辟了新的领域。所开发的方法将对统计和自然产生网络估计问题的应用领域产生重大影响。特别是,应用在神经影像学将探讨。该项目将包括对研究生的教育和培训活动。研究结果将传播给研究界,并用于进一步的跨学科合作努力。软件和代码将开发和存储在公共存储库。当所有样本都是在相似的条件下收集或反映单一类型的疾病时,可以使用图形套索或贝叶斯网络推理方法来学习潜在的条件依赖关系。然而,在许多研究中,在不同的实验环境或其他异质性条件下获得不同亚型或疾病的样本。当考虑多种数据类型时,挑战变得更加艰巨。该项目将侧重于开发贝叶斯方法,以学习跨多个样本组的单一数据类型的网络,该方法既可以将组间的边值链接起来,也可以灵活地建模哪些组最相似。方法还将扩展到从异构主题集和异构数据类型的网络的分层建模框架。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian inference of networks across multiple sample groups and data types
跨多个样本组和数据类型的网络贝叶斯推理
  • DOI:
    10.1093/biostatistics/kxy078
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Shaddox, Elin;Peterson, Christine B;Stingo, Francesco C;Hanania, Nicola A;Cruickshank-Quinn, Charmion;Kechris, Katerina;Bowler, Russell;Vannucci, Marina
  • 通讯作者:
    Vannucci, Marina
Latent Network Estimation and Variable Selection for Compositional Data Via Variational EM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christine Peterson其他文献

Resident-faculty overnight discrepancy rates as a function of number of consecutive nights during a week of night float
住院医师过夜差异率与一周夜间浮动期间连续过夜次数的函数关系
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Christine Peterson;Michael Moore;N. Sarwani;Éric Gagnon;Michael A. Bruno;S. Kanekar
  • 通讯作者:
    S. Kanekar
Psychiatric aspects of adolescent pregnancy
  • DOI:
    10.1016/s0033-3182(82)73347-x
  • 发表时间:
    1982-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christine Peterson;Bhaskar Sripada;Peter Barglow
  • 通讯作者:
    Peter Barglow
Optimization of SARS-CoV-2 detection by RT-QPCR without RNA extraction
无需提取 RNA 即可优化 RT-QPCR 检测 SARS-CoV-2
  • DOI:
    10.1101/2020.04.06.028902
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natacha Mérindol;Geneviève Pépin;C. Marchand;Marylène Rheault;Christine Peterson;A. Poirier;H. Germain;Alexis Danylo
  • 通讯作者:
    Alexis Danylo
3091: Predicting outcome of IROC’s thoracic moving dosimetry audit with random forest modeling.
3091:通过随机森林建模预测IROC的胸腔运动剂量审计的结果。
  • DOI:
    10.1016/s0167-8140(24)03157-8
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Hunter Mehrens;Andrea Molineu;Nickolas Pajot;Paola Alvarez;Paige Taylor;Laurence Court;Rebecca Howell;David Jaffray;Christine Peterson;Julianne Pollard-Larkin;Stephen Kry
  • 通讯作者:
    Stephen Kry
A succinct rating scale for radiology report quality
放射学报告质量的简洁评定量表
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Chengwu Yang;C. Kasales;Ouyang Tao;Christine Peterson;N. Sarwani;R. Tappouni;Michael A. Bruno
  • 通讯作者:
    Michael A. Bruno

Christine Peterson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christine Peterson', 18)}}的其他基金

Collaborative Research: Covariate-Driven Approaches to Network Estimation
协作研究:协变量驱动的网络估计方法
  • 批准号:
    2113557
  • 财政年份:
    2021
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333326
  • 财政年份:
    2023
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333324
  • 财政年份:
    2023
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333325
  • 财政年份:
    2023
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215169
  • 财政年份:
    2022
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
  • 批准号:
    2215920
  • 财政年份:
    2022
  • 资助金额:
    $ 8.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了