General Correlated Count Statistical Structures

一般相关计数统计结构

基本信息

  • 批准号:
    2113592
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This research project will focus on methods for analyzing data recorded in time and/or space that is count-valued, for example, daily county COVID-19 deaths, monthly state tornado counts, and annual North Atlantic severe hurricanes. The data may be correlated in time, implying that counts observed today may be associated by counts occurring in the immediate past, or correlated in space, implying that adjacent observations are associated with each other. The PI will develop statistical methods that take into account the particular type of distribution appropriate for the counts, for example, Poisson, geometric, and binomial, enabling the researcher to make more accurate forecasts and inferences. The models and methods developed here allow both positive and negative correlations in time and space, a feature not achievable with many current statistical count models. For example, COVID-19 cases tend to cluster in groups, while oak and pine trees do not prefer to grow near one and other (negative correlation). The models to be developed in this project will permit the incorporation of covariates and allow for likelihood inference. The PI will also seek to construct the California Climate Center, a research station for climatic and environmental problems quantified by technical methods.On a technical level, the PI will transform a Gaussian space-time process into a count process having the desired marginal distribution(s). The work will prove that this setup produces the most flexible count structures achievable. Extensions involving non-Gaussian processes will be explored and methods to fit the spatio-temporal model via maximum likelihood techniques will be developed via particle filtering and sequential Monte Carlo methods. Extensions to multivariate count time series and will be examined and asymptotic inference for some setups will be studied. Space-time applications to snow presence/absence trends in the Northern Hemisphere will be conducted.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将专注于分析在计数值的时间和/或空间中记录的数据的方法,例如,每日县新冠肺炎死亡人数、每月州龙卷风计数和年度北大西洋严重飓风。这些数据在时间上可能是相关的,这意味着今天观察到的计数可能与最近发生的计数相关,或者在空间上相关,这意味着相邻的观测彼此关联。PI将开发统计方法,考虑到适合计数的特定类型的分布,例如泊松、几何和二项式,使研究人员能够做出更准确的预测和推断。这里开发的模型和方法允许时间和空间上的正相关和负相关,这是许多当前统计计数模型无法实现的特征。例如,新冠肺炎病例倾向于成群生长,而橡树和松树不喜欢生长在一个或另一个附近(负相关)。本项目将开发的模型将允许纳入协变量,并允许进行似然推断。国际气候中心还将寻求建设加州气候中心,这是一个用技术方法量化的气候和环境问题研究站。在技术层面上,国际气候中心将把高斯时空过程转化为具有所需边际分布的计数过程(S)。这项工作将证明,这种设置产生了可实现的最灵活的计数结构。将探索涉及非高斯过程的扩展,并将通过粒子滤波和顺序蒙特卡罗方法开发通过最大似然技术来拟合时空模型的方法。对多元计数时间序列的推广进行了研究,并研究了一些设置的渐近推断。该奖项反映了NSF的法定使命,通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为是值得支持的。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Poisson Count Time Series
泊松计数时间序列
Seasonal count time series
  • DOI:
    10.1111/jtsa.12651
  • 发表时间:
    2022-06-22
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    KONG, J. I. A. J. I. E.;LUND, R. O. B. E. R. T.
  • 通讯作者:
    LUND, R. O. B. E. R. T.
High-dimensional latent Gaussian count time series: Concentration results for autocovariances and applications
高维潜在高斯计数时间序列:自协方差和应用的集中结果
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Düker, Marie-Christine;Lund, Robert;Pipiras, Vladas
  • 通讯作者:
    Pipiras, Vladas
Statistical Inference for Lindley Random Walks with Correlated Increments
具有相关增量的 Lindley 随机游走的统计推断
A Comparison of Changepoint Techniques for Time Series Data
时间序列数据变点技术的比较
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Lund其他文献

Ein Fall von abnormem Verlauf der A. pulmonalis
  • DOI:
    10.1007/bf01944210
  • 发表时间:
    1922-06-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Robert Lund;Willy Munck
  • 通讯作者:
    Willy Munck
Spatial deep convolutional neural networks
空间深度卷积神经网络
  • DOI:
    10.1016/j.spasta.2025.100883
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Qi Wang;Paul A. Parker;Robert Lund
  • 通讯作者:
    Robert Lund
Inference for Shot Noise
Impacts of Land Use/Land Cover Change on Climate and Future Impacts of Land Use/Land Cover Change on Climate and Future Research Priorities Research Priorities
土地利用/土地覆盖变化对气候的影响以及未来土地利用/土地覆盖变化对气候的影响以及未来的研究重点 研究重点
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Mahmood;Kenneth G. Hubbard;Gordon B. Bonan;R. Pielke;D. Niyogi;Peter J. Lawrence;R. McNider;Clive McAlpine;Andrés Etter;S. Gameda;Budong Qian;Andrew M. Carleton;A. Beltrán‐Przekurat;T. Chase;A. Quintanar;J. Adegoke;S. Vezhapparambu;Glen Connor;S. Asefi;Elif Sertel;D. Legates;Yuling Wu;R. Hale;O. Frauenfeld;Anthony Watts;Marshall Shepherd;Chandana Mitra;Valentine G. Anantharaj;S. Fall;Robert Lund;Anna Treviño;P. Blanken;Jinyang Du;Hsin;R. Leeper;U. Nair;Scott Dobler;R. Deo;J. Syktus
  • 通讯作者:
    J. Syktus
Short communication: Detecting possibly frequent change-points: wild binary segmentation 2 and steepest-drop model selection
简短的沟通:检测可能频繁的变化点:狂野的二元分割 2 和最速下降模型选择

Robert Lund的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Lund', 18)}}的其他基金

On a General Class of Count Time Series Models
关于一类一般计数时间序列模型
  • 批准号:
    1407480
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Periodic Stochastic Processes
周期性随机过程
  • 批准号:
    0905570
  • 财政年份:
    2009
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Regression with Periodic Series
周期级数回归
  • 批准号:
    0529861
  • 财政年份:
    2005
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
SRC Summer 2004 Conference
SRC 2004 年夏季会议
  • 批准号:
    0413740
  • 财政年份:
    2004
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Regression with Periodic Series
周期级数回归
  • 批准号:
    0304407
  • 财政年份:
    2003
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Periodic ARMA Modeling
定期 ARMA 建模
  • 批准号:
    0071383
  • 财政年份:
    2000
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Analysis of Periodic Time Series
周期性时间序列分析
  • 批准号:
    9703838
  • 财政年份:
    1997
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Small Grant for Exploratory Research (SGER): Proprietary Manufacturing Technology
探索性研究小额资助 (SGER):专有制造技术
  • 批准号:
    9206405
  • 财政年份:
    1992
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Principles for Machine/Human Compatibility in Manufacturing Systems
制造系统中机器/人类兼容性的原则
  • 批准号:
    8604472
  • 财政年份:
    1987
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing grant
Managing in a Computer Integrated Factory
计算机集成工厂的管理
  • 批准号:
    8414266
  • 财政年份:
    1984
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似海外基金

Attosecond and Strong Field Physics in Correlated Multielectron System
相关多电子系统中的阿秒与强场物理
  • 批准号:
    2419382
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
  • 批准号:
    2333941
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
  • 批准号:
    2316598
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335905
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: Correlated Excitons in Semiconducting Moire Superlattices
职业:半导体莫尔超晶格中的相关激子
  • 批准号:
    2337606
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Cross-correlated optical responses of magnetic excitons in atomic-layer magnetoelectrics
原子层磁电中磁激子的互相关光学响应
  • 批准号:
    24K17019
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CDS&E:CAS:Automated Embedded Correlated Wavefunction Theory for Kinetic Modeling in Heterogeneous Catalysis
CDS
  • 批准号:
    2349619
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Designing topological superconductivity and correlated phases in Van der Waals materials
职业:设计范德华材料中的拓扑超导性和相关相
  • 批准号:
    2238748
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Bulk-edge correspondence and symmetry of strongly correlated topological pump
强相关拓扑泵的体边对应和对称性
  • 批准号:
    23H01091
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了