Sparse and Efficient Estimation with Semiparametric Models in Meta-Analysis

荟萃分析中半参数模型的稀疏有效估计

基本信息

  • 批准号:
    2113674
  • 负责人:
  • 金额:
    $ 14.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

In many scientific fields, such as genomics, epidemiology, and economics, combining large-scale datasets of multiple studies is a valuable approach to fully utilizing the collected data. However, such studies often have privacy policies that prevent individual-level data sharing. In biomedical research, for example, while data integration can boost the power of evaluating risk factors of a disease, study protocols typically prohibit sharing participant-level genomic and clinical data among the studies. This project will investigate meta-analysis that combines studies using compressed information in summary statistics without requiring individual-level data. The PI plans to establish a broad framework with semiparametric regression models and to develop concrete and computationally efficient methods with theoretical guarantees. Both undergraduate and graduate students will receive training through involvement in the research project.The PI will study the general likelihood theory for meta-analysis with semiparametric regression. The theoretical framework to be established will embrace meta-analysis of studies with different observation schemes that generate various data types. The project will deal with both homogeneous and heterogeneous structures of meta-analysis. The PI will develop semiparametric methods based on summary statistics with the aim of efficient estimation and sparse structure recovery. In developing the methods, the research will focus on using and extending techniques such as least-squares approximation and regularization. Statistical properties and optimization algorithms of these methods will be studied under both structure types of meta-analysis. The resulting methods will be applicable to various studies such as large-scale public health studies, prognostic signature studies, and genome-wide association studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多科学领域,如基因组学、流行病学和经济学,将多个研究的大规模数据集结合起来是充分利用收集到的数据的一种有价值的方法。然而,这些研究通常有隐私政策,防止个人层面的数据共享。例如,在生物医学研究中,虽然数据集成可以提高评估疾病风险因素的能力,但研究协议通常禁止在研究之间共享参与者水平的基因组和临床数据。本项目将研究荟萃分析,结合研究使用压缩信息的汇总统计,而不需要个人水平的数据。PI计划用半参数回归模型建立一个广泛的框架,并开发具有理论保证的具体和计算效率高的方法。本科生和研究生将通过参与研究项目接受培训。PI将学习半参数回归荟萃分析的一般似然理论。要建立的理论框架将包括元分析的研究与不同的观察方案,产生各种数据类型。该项目将处理元分析的同质和异质结构。PI将开发基于汇总统计的半参数方法,目的是有效估计和稀疏结构恢复。在开发这些方法时,研究将侧重于使用和扩展最小二乘近似和正则化等技术。在两种结构类型的荟萃分析中,对这些方法的统计特性和优化算法进行了研究。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiwei Li其他文献

Digital Tools Applications to Occupational Health and Safety for People with Autism
数字工具在自闭症患者职业健康和安全中的应用
  • DOI:
    10.1007/978-3-030-70228-1_8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    E. Mpofu;Rebecca Cagle;C. Chiu;Qiwei Li;L. Holloway
  • 通讯作者:
    L. Holloway
High performance pixelated quantum dots array on Micro-LED by inkjet printing
  • DOI:
    10.1016/j.optmat.2024.116041
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Qiwei Li;Yu Lu;Yang Li;Kui Pan;Liying Deng;Chang Lin;Kaixin Zhang;Jie Sun;Qun Yan;Tailiang Guo
  • 通讯作者:
    Tailiang Guo
Molecular epidemiology and genomic dynamics of emPseudomonas aeruginosa/em isolates causing relapse infections
导致复发感染的铜绿假单胞菌分离株的分子流行病学和基因组动态
  • DOI:
    10.1128/spectrum.05312-22
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Cong Shen;Jinxiang Zeng;Dexiang Zheng;Yinglun Xiao;Jieying Pu;Li Luo;Hongyun Zhou;Yimei Cai;Liling Zhang;Meina Wu;Xuan Zhang;Guangyuan Deng;Song Li;Qiwei Li;Jianming Zeng;Zhaohui Sun;Bin Huang;Cha Chen
  • 通讯作者:
    Cha Chen
Higher patient activation is associated with lower odds of functional limitation in older adults with chronic diseases
  • DOI:
    10.1016/j.gerinurse.2024.11.008
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ji Won Lee;Junxin Li;Sarah L. Szanton;Qiwei Li;Minhui Liu;Melissa D. Hladek
  • 通讯作者:
    Melissa D. Hladek
Physical activity participation among older adults with diabetes: Applying the World Health Organization’s International Classification of Functioning, Disability and Health (ICF) Guidelines
患有糖尿病的老年人参与体育活动:应用世界卫生组织的国际功能、残疾和健康分类 (ICF) 指南

Qiwei Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qiwei Li', 18)}}的其他基金

Developing Modern Spatial and Shape Analysis for New Heterogeneous High-dimensional Geospatial Data
为新的异构高维地理空间数据开发现代空间和形状分析
  • 批准号:
    2210912
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant

相似海外基金

Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
  • 批准号:
    MR/X030261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Research Grant
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
  • 批准号:
    2337943
  • 财政年份:
    2024
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Continuing Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
  • 批准号:
    23H03353
  • 财政年份:
    2023
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
  • 批准号:
    2320875
  • 财政年份:
    2023
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Estimation of seismic noise: toward efficient seismic observation and microtremor survey
地震噪声估计:实现高效的地震观测和微震勘测
  • 批准号:
    23K03514
  • 财政年份:
    2023
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards efficient state estimation in wall-bounded flows: hierarchical adjoint data assimilation
实现壁界流中的有效状态估计:分层伴随数据同化
  • 批准号:
    2332057
  • 财政年份:
    2023
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
  • 批准号:
    2311072
  • 财政年份:
    2023
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Highly efficient channel estimation by multi-dimensional signal processing for massive connectivity
通过多维信号处理进行高效信道估计以实现大规模连接
  • 批准号:
    22K04101
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reliable and Efficient Estimation of the Economic Value of medical Research (REEEVR)
可靠、高效的医学研究经济价值估算 (REEEVR)
  • 批准号:
    MR/W029855/1
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Research Grant
Efficient estimation in a novel hybrid model combining deep learning and joint modeling of longitudinal and time-to-event analysis for multimodal health data
结合深度学习和多模态健康数据纵向和事件时间分析联合建模的新型混合模型的有效估计
  • 批准号:
    559863-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了