Bioelectronic Sensor using Synthetically Engineered and Electroactive Bacteria for Detection of Aquatic Nutrients
使用合成工程和电活性细菌检测水生营养素的生物电子传感器
基本信息
- 批准号:2114041
- 负责人:
- 金额:$ 37.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Across the globe, freshwater and marine ecosystems are threatened by the effects of multiple, co-occurring environmental pressures including pollutants, invasive species, climate change, acidification, and excess nutrients. Ecologists strive to monitor, understand, and model the effects of excess nutrients, including phosphates and nitrates, in combination with other human threats. Understanding dynamic spaces with complex and interdependent factors will require a new generation of sensors. Biology-enabled sensors have significant advantages with respect to sensitivity, error-tolerance, scalability, selectivity, and versatility. However, readout and long-range interconnectivity are currently problematic, if not impossible, with biology alone. Biohybrid devices can exploit and tune the strengths of both electronic and biological sensing through a dynamic bioelectronic interface. To achieve it, electroactive bacteria (dissimilatory metal/sulfate reducing bacteria) and their extracellular electron transport mechanisms are employed to transduce their environmental response to measurable biocurrent. A three- dimensional nanofabricated electrode can collect a bacterially derived current for signal processing. The response to a target in the environment is more precisely selected and intensified by the collective response of engineered and highly versatile Escherichia coli. By distributing the sensing and actuation roles between synthetic E. coli and the dissimilatory reducing powerhouse Shewanella oneidensis MR-1, confidence in the presence of a select target is enhanced with the aggregation of individual responses from large number of E. coli bacteria to the community of electroactive bacteria. The bioelectronic interface design is a foundational step toward a new generation of sensing hardware that can meet the vast and expanding promise of machine learning and artificial intelligence. Cross-disciplinary training modules will be developed to designed by the on-campus community of researchers including graduate and undergraduate students. By including new researchers, accessible content is created for the local and international GK-12 community. Local students from the Independent Sanctuary for Independent Media Nature Lab will create informative and creative content for the international cohort starting with the H20 Virtual Academy at the Karada Mixed Secondary School in Kisumu, Kenya. The international connection of gifted local and international students, a flow of stimuli, to convey state-of- the-art knowledge about the environment around them reflect the goals of research.In the proposed work, a mechanism for the detection of phosphate will be investigated using an interconnected network of E. coli and S. oneidensis MR-1. Phosphate detection is essential to understanding ecological dynamics in aquatic ecosystems. A dynamic bioelectronic interface will be created for its potential use in the detection of multiple small molecule targets by engineered bacteria. The system design is inherently modular where electroactive S. oneidensis serves as the bioelectronic interface while E.coli is the easily engineered front end. Electroactive bacteria (dissimilatory metal/sulfate reducing bacteria) and their extracellular electron transport mechanisms will be employed to transduce their environmental response to achieve a measurable biocurrent. A three-dimensional nanofabricated electrode, consisting of a nanomaterial-decorated graphene foam and the two bacteria will generate and transduce the biocurrent for signal processing. The response to a target in the environment is more precisely selected and intensified by the collective response of engineered E. coli. Modules will be linked via chemical quorum sensing and tuned with respect to transfer function and signal amplification using synthetic biology approaches. The co-cultured bacteria configuration will be optimized for cell-viability and signal transport. The research is accomplished through the following objectives: Objective 1: Design and fabricate a bioelectronic backend interface from quorum sensing signal to S. oneidensis biocurrent for signal transduction; Objective 2: Design and fabricate a bioelectronic frontend interface from target (phosphate) to E. coli quorum sensing signal; Objective 3: Integrate objectives 1 and 2, and fabricate, test, and validate bioelectronic sensor from target (phosphate) to biocurrent signal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在地球仪范围内,淡水和海洋生态系统受到多重环境压力的威胁,这些压力包括污染物、入侵物种、气候变化、酸化和营养过剩。生态学家致力于监测、了解和模拟过量营养素(包括磷酸盐和硝酸盐)与其他人类威胁的影响。理解具有复杂和相互依赖因素的动态空间将需要新一代传感器。生物传感器在灵敏度、容错性、可扩展性、选择性和多功能性方面具有显著的优势。然而,单就生物学而言,读出和远程互连目前是有问题的,如果不是不可能的话。生物混合器件可以通过动态生物电子接口来利用和调整电子和生物传感的强度。为了实现这一目标,利用电活性细菌(异化金属/硫酸盐还原细菌)及其胞外电子传递机制将其环境响应转换为可测量的生物电流。三维纳米制造的电极可以收集细菌产生的电流用于信号处理。对环境中的靶的反应通过工程化的和高度通用的大肠杆菌的集体反应而被更精确地选择和加强。通过在合成的E.大肠杆菌和异化还原菌Shewanellaoneidensis MR-1的反应中,通过聚集来自大量大肠杆菌的个体反应,增强了存在选择靶的置信度。大肠杆菌转化为电活性菌群。生物电子接口设计是迈向新一代传感硬件的基础性一步,新一代传感硬件可以满足机器学习和人工智能的巨大和不断扩大的前景。跨学科培训模块将由校内研究人员社区(包括研究生和本科生)开发设计。通过纳入新的研究人员,为当地和国际GK-12社区创建了无障碍内容。来自独立媒体自然实验室独立保护区的当地学生将为国际学生创造信息和创意内容,首先是肯尼亚基苏穆卡拉达混合中学的H20虚拟学院。在本研究中,我们将利用一个由E. coli和革兰氏阳性菌S.单齿菌MR-1。磷酸盐的检测对于理解水生生态系统中的生态动力学至关重要。将建立一个动态的生物电子接口,以潜在的应用在检测多个小分子靶标的工程菌。该系统设计是固有的模块化,其中电活性S. oneidensis用作生物电子接口,而大肠杆菌是易于工程化的前端。电活性细菌(异化金属/硫酸盐还原菌)及其胞外电子传递机制将被用于转换其环境响应以获得可测量的生物电流。一个三维纳米制造的电极,由纳米材料装饰的石墨烯泡沫和两个细菌组成,将产生和转换信号处理的生物电流。对环境中的目标的反应通过工程菌的集体反应被更精确地选择和加强。杆菌模块将通过化学群体感应连接,并使用合成生物学方法在传递函数和信号放大方面进行调节。将优化共培养细菌配置的细胞活力和信号转运。本课题的主要研究内容如下:1.设计并制作了一个群体感应信号到S.目的2:设计并制作一种以磷酸盐为靶点的生物电子前端与大肠杆菌(E. coli群体感应信号;目标三:整合目标1和2,制造、测试和验证从目标(磷酸盐)到生物电流信号的生物电子传感器。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shayla Sawyer其他文献
Shayla Sawyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shayla Sawyer', 18)}}的其他基金
SitS Socializing Soil: Enhancing Community CoOperation with Iterative Sensor Research (S3-ECO-wISeR)
SitS 社交化土壤:通过迭代传感器研究加强社区合作 (S3-ECO-wISeR)
- 批准号:
2226714 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Ultrasensitive frequency domain spectrometer for high throughput bacteria detection in floodwater
EAGER:协作研究:用于洪水中高通量细菌检测的超灵敏频域光谱仪
- 批准号:
1760404 - 财政年份:2018
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
相似国自然基金
人类NADPH sensor蛋白HSCARG调控机制研究
- 批准号:30930020
- 批准年份:2009
- 资助金额:170.0 万元
- 项目类别:重点项目
基于sensor agent的营养液组分动态测量与建模研究
- 批准号:60775014
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
- 批准号:
EP/X027732/1 - 财政年份:2024
- 资助金额:
$ 37.49万 - 项目类别:
Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
- 批准号:
2401047 - 财政年份:2024
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
Multimodal cancer therapy and diagnostic system using 256-channel diamond quantum sensor array
使用256通道金刚石量子传感器阵列的多模式癌症治疗和诊断系统
- 批准号:
23H03721 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Innovative In-Sensor Computing Devices Using Random Network Structure Reservoirs
使用随机网络结构储层的创新传感器内计算设备
- 批准号:
23K17864 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
An integrated intervention using a pill ingestible sensor system to trigger actions on multifaceted social and behavioral determinants of health among PLWH
使用药丸摄入传感器系统进行综合干预,以针对艾滋病毒感染者健康的多方面社会和行为决定因素采取行动
- 批准号:
10820048 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
I-Corps: Sensor-based frailty assessment tool using a smart watch
I-Corps:使用智能手表的基于传感器的虚弱评估工具
- 批准号:
2311611 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
Standard Grant
Continuous Measurement of the Moisture Contents of Dewatered Sewage Sludge during Thermal Drying using Dielectric Soil Moisture Sensor
使用介电土壤湿度传感器连续测量热干燥过程中脱水污泥的含水量
- 批准号:
23K19141 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of new soundness evaluation method using sensor function of anchor
利用锚的传感器功能开发新的稳健性评估方法
- 批准号:
23K04026 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Artificial Intelligence for structural health monitoring using graphene sensor systems (InteGraph)
使用石墨烯传感器系统进行结构健康监测的人工智能 (InteGraph)
- 批准号:
10066187 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
Collaborative R&D
Development of microscale NMR system toward single cell measurement using diamond quantum sensor
使用金刚石量子传感器开发用于单细胞测量的微型核磁共振系统
- 批准号:
22KJ1907 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows