Bioelectronic Sensor using Synthetically Engineered and Electroactive Bacteria for Detection of Aquatic Nutrients

使用合成工程和电活性细菌检测水生营养素的生物电子传感器

基本信息

  • 批准号:
    2114041
  • 负责人:
  • 金额:
    $ 37.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Across the globe, freshwater and marine ecosystems are threatened by the effects of multiple, co-occurring environmental pressures including pollutants, invasive species, climate change, acidification, and excess nutrients. Ecologists strive to monitor, understand, and model the effects of excess nutrients, including phosphates and nitrates, in combination with other human threats. Understanding dynamic spaces with complex and interdependent factors will require a new generation of sensors. Biology-enabled sensors have significant advantages with respect to sensitivity, error-tolerance, scalability, selectivity, and versatility. However, readout and long-range interconnectivity are currently problematic, if not impossible, with biology alone. Biohybrid devices can exploit and tune the strengths of both electronic and biological sensing through a dynamic bioelectronic interface. To achieve it, electroactive bacteria (dissimilatory metal/sulfate reducing bacteria) and their extracellular electron transport mechanisms are employed to transduce their environmental response to measurable biocurrent. A three- dimensional nanofabricated electrode can collect a bacterially derived current for signal processing. The response to a target in the environment is more precisely selected and intensified by the collective response of engineered and highly versatile Escherichia coli. By distributing the sensing and actuation roles between synthetic E. coli and the dissimilatory reducing powerhouse Shewanella oneidensis MR-1, confidence in the presence of a select target is enhanced with the aggregation of individual responses from large number of E. coli bacteria to the community of electroactive bacteria. The bioelectronic interface design is a foundational step toward a new generation of sensing hardware that can meet the vast and expanding promise of machine learning and artificial intelligence. Cross-disciplinary training modules will be developed to designed by the on-campus community of researchers including graduate and undergraduate students. By including new researchers, accessible content is created for the local and international GK-12 community. Local students from the Independent Sanctuary for Independent Media Nature Lab will create informative and creative content for the international cohort starting with the H20 Virtual Academy at the Karada Mixed Secondary School in Kisumu, Kenya. The international connection of gifted local and international students, a flow of stimuli, to convey state-of- the-art knowledge about the environment around them reflect the goals of research.In the proposed work, a mechanism for the detection of phosphate will be investigated using an interconnected network of E. coli and S. oneidensis MR-1. Phosphate detection is essential to understanding ecological dynamics in aquatic ecosystems. A dynamic bioelectronic interface will be created for its potential use in the detection of multiple small molecule targets by engineered bacteria. The system design is inherently modular where electroactive S. oneidensis serves as the bioelectronic interface while E.coli is the easily engineered front end. Electroactive bacteria (dissimilatory metal/sulfate reducing bacteria) and their extracellular electron transport mechanisms will be employed to transduce their environmental response to achieve a measurable biocurrent. A three-dimensional nanofabricated electrode, consisting of a nanomaterial-decorated graphene foam and the two bacteria will generate and transduce the biocurrent for signal processing. The response to a target in the environment is more precisely selected and intensified by the collective response of engineered E. coli. Modules will be linked via chemical quorum sensing and tuned with respect to transfer function and signal amplification using synthetic biology approaches. The co-cultured bacteria configuration will be optimized for cell-viability and signal transport. The research is accomplished through the following objectives: Objective 1: Design and fabricate a bioelectronic backend interface from quorum sensing signal to S. oneidensis biocurrent for signal transduction; Objective 2: Design and fabricate a bioelectronic frontend interface from target (phosphate) to E. coli quorum sensing signal; Objective 3: Integrate objectives 1 and 2, and fabricate, test, and validate bioelectronic sensor from target (phosphate) to biocurrent signal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在全球范围内,淡水和海洋生态系统受到多个共同发生的环境压力的影响,包括污染物,入侵物种,气候变化,酸化和过量的养分。生态学家努力监测,理解和建模多余的营养物质(包括磷酸盐和硝酸盐)的影响与其他人类威胁结合使用。了解具有复杂且相互依存的因素的动态空间将需要新一代传感器。启用生物学的传感器在灵敏度,容忍度,可伸缩性,选择性和多功能性方面具有显着优势。但是,读数和远程互连性目前与仅生物学的问题是有问题的,即使不是不可能的话。生物杂交设备可以通过动态生物电子界面来利用和调整电子和生物传感的强度。为了实现这一目标,采用电活性细菌(异化金属/硫酸盐还原细菌)及其细胞外电子传输机制用于将其环境反应转换为可测量的生物流。三维纳米制动电极可以收集一个用于信号处理的细菌衍生的电流。通过工程和高度用途大肠杆菌的集体响应,更精确地选择了对环境中目标的反应。通过分布合成大肠杆菌和脱水的降低功率Shewanella oneidensis MR-1之间的传感和致动作用,通过从大量大肠杆菌细菌到电活性细菌群落的各个反应的聚集,对存在选择靶标的存在的信心得到增强。生物电子界面设计是迈向新一代感应硬件的基本步骤,可以满足机器学习和人工智能的广泛承诺。跨学科培训模块将由包括研究生和本科生在内的校园内研究人员社区设计。通过包括新的研究人员,为本地和国际GK-12社区创建了可访问的内容。来自独立媒体自然实验室独立庇护所的本地学生将为国际队列创建信息和创造性的内容,从肯尼亚基苏木的卡拉达混合中学的H20虚拟学院开始。有天赋的本地和国际学生的国际联系,即刺激的流动,以传达有关它们周围环境的最先进的知识反映了研究的目标。在拟议的工作中,将使用大肠杆菌和S. Oneidensis MR-1的互连网络来研究检测磷酸盐的机制。磷酸盐检测对于理解水生生态系统的生态动力学至关重要。将创建一个动态生物电源界面,以通过工程细菌在检测多个小分子靶标中的潜在使用。系统设计本质上是模块化的,其中电活性S. Oneidensis用作生物电子界面,而大肠杆菌是易于设计的前端。电活性细菌(异化金属/硫酸盐还原细菌)及其细胞外电子传输机制将用于传递其环境反应以实现可测量的生物流。由纳米材料装饰的石墨烯泡沫和两个细菌组成的三维纳米制动电极将产生并转导生物趋势进行信号处理。通过工程大肠杆菌的集体响应,更精确地选择和加强了对环境中目标的反应。模块将通过化学法定感测来链接,并使用合成生物学方法调整有关传递功能和信号扩增的调整。共培养的细菌构型将被优化,以用于细胞可容纳和信号传输。该研究是通过以下目标完成的:目标1:设计和构建一个从群体传感信号到S. Oneidensis Biocurrent的生物电子后端界面以进行信号转导;目标2:设计和制造一个从目标(磷酸盐)到大肠杆菌群体传感信号的生物电子前端界面;目标3:整合目标1和2,以及从目标(磷酸盐)到Biocurrent信号的生物电子传感器的制造,测试和验证。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准来通过评估来进行评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shayla Sawyer其他文献

Shayla Sawyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shayla Sawyer', 18)}}的其他基金

SitS Socializing Soil: Enhancing Community CoOperation with Iterative Sensor Research (S3-ECO-wISeR)
SitS 社交化土壤:通过迭代传感器研究加强社区合作 (S3-ECO-wISeR)
  • 批准号:
    2226714
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Ultrasensitive frequency domain spectrometer for high throughput bacteria detection in floodwater
EAGER:协作研究:用于洪水中高通量细菌检测的超灵敏频域光谱仪
  • 批准号:
    1760404
  • 财政年份:
    2018
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Bacillus subtilis 细胞传感器介导的肠道环境中结直肠癌相关生物标志物的动态检测策略
  • 批准号:
    82372355
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于钼钨合金类二维材料的高性能柔性力学传感器研究
  • 批准号:
    62371397
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于自支撑PMN-PT单晶薄膜的自组装柔性压电传感器研究
  • 批准号:
    62371387
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于共价有机框架薄膜的气体传感器及其敏感机理研究
  • 批准号:
    62371299
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
锡基钙钛矿/二氧化锡异质结的室温痕量氧气体传感器研究
  • 批准号:
    62301033
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
  • 批准号:
    EP/X027732/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
  • 批准号:
    2401047
  • 财政年份:
    2024
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Standard Grant
Multimodal cancer therapy and diagnostic system using 256-channel diamond quantum sensor array
使用256通道金刚石量子传感器阵列的多模式癌症治疗和诊断系统
  • 批准号:
    23H03721
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Innovative In-Sensor Computing Devices Using Random Network Structure Reservoirs
使用随机网络结构储层的创新传感器内计算设备
  • 批准号:
    23K17864
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Using in-vivo Real-time Biosensor to Evaluate Prodrugs Designed to Prolong Therapeutic Effects for Smoking Cessation.
使用体内实时生物传感器评估旨在延长戒烟治疗效果的前药。
  • 批准号:
    10546293
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了