EAGER: Collaborative Research: Ultrasensitive frequency domain spectrometer for high throughput bacteria detection in floodwater

EAGER:协作研究:用于洪水中高通量细菌检测的超灵敏频域光谱仪

基本信息

  • 批准号:
    1760404
  • 负责人:
  • 金额:
    $ 14.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

An award is made to Tufts University and Rensselaer Polytechnic Institute to develop a frequency domain spectrometer for high throughput tracking of bacteria in flood water in real time. In the aftermath of major catastrophic hurricanes like Harvey and Irma with winds that pull trees from their roots and roofs from houses, danger quietly continues at the microscopic level in the remaining floodwaters. This EAGER research project will advance fundamental research on sensing technology for rapid characterization of pathogenic bacteria in floodwater generated by future catastrophic events. Covering the spectrum from hybrid materials to system, there are variables and trade-offs that can only be clearly defined through methodical, directed experimentation. With this knowledge, synergistic innovations at material, device and system architecture are pursued to affect unprecedented sensor performance. The proposed cross-disciplinary research and education program will have significant broader impacts on fluorescence spectroscopy and optical sensor technology based on heterogeneous integration of nanocomposites on silicon. Instrument miniaturization will enable new studies correlating factors in water quality. Interactive workshops with biochemists and students will be organized to guide spectrometer development. There is a strong mentoring and training component for students at all levels at Tufts, RPI and the broader community.The objective of this proposal is to develop a highly sensitive frequency domain spectrometer instrument for high-throughput tracking of bacteria to quantify and identify bacteria in floodwater in real time, which significantly reduces labor, time, and cost. The proposed work focuses on the spectral and temporal characteristics of intrinsic fluorescence and the material, device, and circuit innovations needed to detect them. Significant technical barriers must be overcome including optical sensitivity, wavelength selectivity, environmental robustness, interference, low-noise signal amplification, and power consumption. The proposed instrument is built on enhancements from the synergistic properties of new nanocomposites that comprise an ultrasensitive device while remaining compatible with large-scale, silicon fabrication processes. The proposed research work will benefit studies of pathogenic bacteria in floodwaters. The frequency domain spectrometer device is realized using a hybrid system-on-chip approach combining nanocomposite optoelectronic devices integrated with silicon CMOS technology for low-power, complex signal processing and bacteria classification. Silicon integrated circuit technology enables system miniaturization, resulting in an overall reduction in power consumption and parasitic components that contribute to system noise and performance degradation. This project is well suited to an EAGER grant given the innovative aspects of the proposed research program involving the merger of self-assembled nanocomposite structures, high sensitivity analog electronics, ultra-low-power multiplexing and digitization circuitry, and emerging nanofabrication techniques. The project will realize a new class of portable fluorescence spectrometers, enabling high throughput spatial and temporal correlation of fluorescence emission data for bacteria characterization unachievable with current systems. Motivated by the need to detect low level, RF-modulated optical signals over a wide dynamic range, this research project will explore the design of novel bipolar front-end analog circuitry with advanced features, including programmable gain, chopper stabilization, and offset compensation. Low-power circuit architectures for on-chip signal quantization and digitization will be explored to enable back-end digital processing for bacteria classification.
塔夫茨大学和伦斯勒理工学院被授予开发一种频域光谱仪,用于实时高通量跟踪洪水中的细菌。在哈维和伊尔玛等重大灾难性飓风之后,大风将树木从树根和屋顶上刮走,在剩余的洪水中,危险在微观层面上悄悄地继续着。这一迫切的研究项目将推进传感技术的基础研究,以快速表征未来灾难性事件产生的洪水中的病原菌。涵盖从混合材料到系统的光谱,有一些变量和权衡只有通过有条不紊的直接实验才能清楚地定义。有了这些知识,在材料、设备和系统架构方面的协同创新被追求以影响前所未有的传感器性能。拟议的跨学科研究和教育计划将对基于硅上纳米复合材料的异质集成的荧光光谱和光学传感器技术产生重大而广泛的影响。仪器的小型化将使有关水质因素的新研究成为可能。将组织与生物化学家和学生的互动研讨会,以指导光谱仪的发展。这项计划的目标是开发一种高灵敏度的频域光谱仪仪器,用于高通量跟踪细菌,以实时量化和识别洪水中的细菌,从而显著减少人力、时间和成本。拟议的工作重点是本征荧光的光谱和时间特性以及检测它们所需的材料、设备和电路创新。必须克服重大技术障碍,包括光学灵敏度、波长选择性、环境稳健性、干扰、低噪声信号放大和功耗。建议的仪器建立在新型纳米复合材料的协同性能增强的基础上,这些纳米复合材料包括一个超灵敏设备,同时保持与大规模硅制造工艺的兼容。拟议的研究工作将有助于洪水中致病菌的研究。频域光谱仪装置采用混合片上系统方法实现,将纳米复合光电子器件与硅CMOS技术集成在一起,用于低功耗、复杂的信号处理和细菌分类。硅集成电路技术实现了系统小型化,从而总体上降低了导致系统噪音和性能下降的功耗和寄生元件。鉴于拟议研究计划的创新方面涉及自组装纳米复合材料结构、高灵敏度模拟电子学、超低功率多路复用和数字化电路以及新兴的纳米制造技术,该项目非常适合获得热切的资助。该项目将实现一种新的便携式荧光光谱仪,使荧光发射数据能够高通量地进行空间和时间关联,以确定细菌的特征,这是目前的系统无法实现的。由于需要在宽动态范围内检测低电平、RF调制的光信号,本研究项目将探索设计具有先进功能的新型双极前端模拟电路,包括可编程增益、斩波稳定和偏移补偿。将探索用于芯片上信号量化和数字化的低功耗电路架构,以实现细菌分类的后端数字处理。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shayla Sawyer其他文献

Shayla Sawyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shayla Sawyer', 18)}}的其他基金

SitS Socializing Soil: Enhancing Community CoOperation with Iterative Sensor Research (S3-ECO-wISeR)
SitS 社交化土壤:通过迭代传感器研究加强社区合作 (S3-ECO-wISeR)
  • 批准号:
    2226714
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Bioelectronic Sensor using Synthetically Engineered and Electroactive Bacteria for Detection of Aquatic Nutrients
使用合成工程和电活性细菌检测水生营养素的生物电子传感器
  • 批准号:
    2114041
  • 财政年份:
    2021
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了