EAGER: Collaborative Research: Ultrasensitive frequency domain spectrometer for high throughput bacteria detection in floodwater

EAGER:协作研究:用于洪水中高通量细菌检测的超灵敏频域光谱仪

基本信息

  • 批准号:
    1760404
  • 负责人:
  • 金额:
    $ 14.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

An award is made to Tufts University and Rensselaer Polytechnic Institute to develop a frequency domain spectrometer for high throughput tracking of bacteria in flood water in real time. In the aftermath of major catastrophic hurricanes like Harvey and Irma with winds that pull trees from their roots and roofs from houses, danger quietly continues at the microscopic level in the remaining floodwaters. This EAGER research project will advance fundamental research on sensing technology for rapid characterization of pathogenic bacteria in floodwater generated by future catastrophic events. Covering the spectrum from hybrid materials to system, there are variables and trade-offs that can only be clearly defined through methodical, directed experimentation. With this knowledge, synergistic innovations at material, device and system architecture are pursued to affect unprecedented sensor performance. The proposed cross-disciplinary research and education program will have significant broader impacts on fluorescence spectroscopy and optical sensor technology based on heterogeneous integration of nanocomposites on silicon. Instrument miniaturization will enable new studies correlating factors in water quality. Interactive workshops with biochemists and students will be organized to guide spectrometer development. There is a strong mentoring and training component for students at all levels at Tufts, RPI and the broader community.The objective of this proposal is to develop a highly sensitive frequency domain spectrometer instrument for high-throughput tracking of bacteria to quantify and identify bacteria in floodwater in real time, which significantly reduces labor, time, and cost. The proposed work focuses on the spectral and temporal characteristics of intrinsic fluorescence and the material, device, and circuit innovations needed to detect them. Significant technical barriers must be overcome including optical sensitivity, wavelength selectivity, environmental robustness, interference, low-noise signal amplification, and power consumption. The proposed instrument is built on enhancements from the synergistic properties of new nanocomposites that comprise an ultrasensitive device while remaining compatible with large-scale, silicon fabrication processes. The proposed research work will benefit studies of pathogenic bacteria in floodwaters. The frequency domain spectrometer device is realized using a hybrid system-on-chip approach combining nanocomposite optoelectronic devices integrated with silicon CMOS technology for low-power, complex signal processing and bacteria classification. Silicon integrated circuit technology enables system miniaturization, resulting in an overall reduction in power consumption and parasitic components that contribute to system noise and performance degradation. This project is well suited to an EAGER grant given the innovative aspects of the proposed research program involving the merger of self-assembled nanocomposite structures, high sensitivity analog electronics, ultra-low-power multiplexing and digitization circuitry, and emerging nanofabrication techniques. The project will realize a new class of portable fluorescence spectrometers, enabling high throughput spatial and temporal correlation of fluorescence emission data for bacteria characterization unachievable with current systems. Motivated by the need to detect low level, RF-modulated optical signals over a wide dynamic range, this research project will explore the design of novel bipolar front-end analog circuitry with advanced features, including programmable gain, chopper stabilization, and offset compensation. Low-power circuit architectures for on-chip signal quantization and digitization will be explored to enable back-end digital processing for bacteria classification.
向塔夫茨大学和伦斯勒理工学院颁发了奖励,以开发一个频域光谱仪,以实时对洪水中细菌的高吞吐量跟踪。 在大型灾难性飓风(如哈维和艾尔马)的灾难之后,风从房屋的根和屋顶上拉出树木,危险在其余的洪水中静静地在微观层面上继续。 该急切的研究项目将推进有关传感技术的基本研究,以快速表征未来灾难性事件产生的洪水中的致病细菌。 涵盖了从混合材料到系统的光谱,有一些变量和权衡,只能通过有条不紊的定向实验来清楚地定义。有了这些知识,追求材料,设备和系统体系结构的协同创新,以影响前所未有的传感器性能。拟议的跨学科研究和教育计划将基于基于硅上纳米复合材料的异质整合,对荧光光谱和光学传感器技术产生更广泛的影响。 仪器小型化将使新研究能够将水质中的因素相关联。与生物化学家和学生的互动研讨会将组织起来,以指导光谱仪的开发。在Tuft,RPI和更广泛的社区的各个级别的学生中,都有强大的指导和培训组成部分。该提案的目的是开发一种高度敏感的频域光谱仪仪器,用于对细菌进行高通量跟踪,以实时量化和识别洪水中的细菌,从而大大降低了劳动力,时间和成本。 所提出的工作着重于内在荧光的光谱和时间特征以及检测它们所需的材料,设备和电路创新。 必须克服重要的技术障碍,包括光敏性,波长选择性,环境鲁棒性,干扰,低噪声信号放大和功耗。所提出的仪器建立在新的纳米复合材料的协同特性的增强基础上,这些纳米复合材料包含超敏化设备,同时与大规模的硅制造工艺保持兼容。 拟议的研究工作将使洪水中病​​原细菌的研究受益。频域光谱仪设备是使用混合系统芯片方法来实现的,该方法结合了与硅CMOS技术集成的纳米复合光电器件,用于低功率,复杂的信号处理和细菌分类。 硅集成电路技术可以实现系统的微型化,从而导致功耗和寄生成分的总体减少,从而导致系统噪声和性能降解。鉴于提出的研究计划的创新方面涉及自组装纳米复合材料结构的合并,高灵敏度模拟电子设备,超低功率多重电路和数字化电路以及新出现的纳米化处理技术,因此该项目非常适合急切的赠款。该项目将实现一类新的便携式荧光光谱仪,从而实现高吞吐量的空间和时间相关性,以使细菌与当前系统无法实现的细菌表征。 由于需要检测低水平的动力,RF调制的光学信号在广泛的动态范围内,该研究项目将探索具有先进功能的新型双相前端模拟电路的设计,包括可编程增益,斩波器稳定和偏移补偿。将探索用于芯片信号量化和数字化的低功率电路体系结构,以实现用于细菌分类的后端数字处理。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shayla Sawyer其他文献

Shayla Sawyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shayla Sawyer', 18)}}的其他基金

SitS Socializing Soil: Enhancing Community CoOperation with Iterative Sensor Research (S3-ECO-wISeR)
SitS 社交化土壤:通过迭代传感器研究加强社区合作 (S3-ECO-wISeR)
  • 批准号:
    2226714
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Bioelectronic Sensor using Synthetically Engineered and Electroactive Bacteria for Detection of Aquatic Nutrients
使用合成工程和电活性细菌检测水生营养素的生物电子传感器
  • 批准号:
    2114041
  • 财政年份:
    2021
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了