BIGDATA: Collaborative Research: IA: Big Data Analytics for Optimized Planning of Smart, Sustainable, and Connected Communities

BIGDATA:协作研究:IA:用于智能、可持续和互联社区优化规划的大数据分析

基本信息

项目摘要

Transforming villages, towns, and cities into smart, connected, and sustainable communities is one of the most critical technological challenges of the coming decade. Realizing this vision is contingent upon enabling existing community infrastructure such as transportation, communications, and energy systems, to seamlessly integrate sustainable components such as renewable sources, smart sensors, and electric vehicles. Such an integration will ensure that tomorrow's communities are truly sustainable and connected by exhibiting desirable qualities that include: a) zero energy, in that they are self-sufficient in their energy production, b) zero outage, in that communication links across the community are ultra-reliable and experience significantly low interruption, and c) zero congestion, in that the traffic congestion is minimized across the community. With this overarching vision, the goal of this project is to develop a new planning framework for smart, connected and sustainable communities that allows meeting such zero-energy, zero-outage, and zero-congestions goals by optimally deciding on how, when, and where to deploy or upgrade a community's infrastructure. These decisions will be driven by massive volumes of community data, stemming from multiple sources that can include mobility, energy, traffic, communication demands, and other socio-technological information, to make informed decisions on how to gradually and organically transform a community into a fully sustainable and truly connected environment. The scale and heterogeneity of this problem necessitates the need for innovation in the tools used to process, analyze, and visualize heterogeneous data, as well as the data-aware metrics used to monitor the performance of this community infrastructure. One key element of this research is creation of a virtual testbed that can accurately reconstruct, simulate, and evaluate the theoretical framework by leveraging real-world big data sets from Virginia Tech and a zero-energy community in Florida as well as other sources, such as the DOE. The testbed is intended to be open access and will be able to support both research at host institution as well as other users requiring non-proprietary multi-domain open-data sets. The holistic nature of this research is thus expected to catalyze the global deployment of sustainable and connected communities. The proposed research will be complemented by a smart community big data challenge event that will enable broad community participation. The educational plan includes new big data-centric courses, as well as a large-scale involvement of graduate and undergraduate students in big data and smart communities research. Broad dissemination is ensured via open-source software and periodic workshops and tutorials. K-12 outreach events will be organized to attract under-represented student groups to big data research.This transformative research will lay the theoretical and practical foundations of smart, connected, and sustainable communities by developing the first big data-driven holistic approach to joint planning, optimization, and deployment of community infrastructure for systems of critical importance, such as communication, energy, and transportation networks. By bringing together interdisciplinary domain experts from data science, electrical engineering, and civil and architectural engineering, this research will yield several innovations: 1) Novel big data techniques for faithfully creating spatio-temporal models for smart communities that integrate data from heterogeneous sources and shed light on the composition and operation of a given smart community, 2) Novel, data-driven performance metrics that advance powerful mathematical tools from stochastic geometry to explicitly quantify the health of smart communities via tractable notions of zero energy, zero outage, and zero congestion, 3) Advanced analytical tools that bring forward novel ideas from optimization theory to devise the most effective strategies for deploying, upgrading, and operating various community infrastructure nodes, given the scale, dynamics, and structure of both the data and the community, and 4) A virtual smart community testbed that can accurately reconstruct, simulate, and evaluate the theoretical framework by leveraging open non-proprietary real-world big data sets.
将村庄、城镇和城市转变为智能、互联和可持续的社区是未来十年最关键的技术挑战之一。实现这一愿景取决于使现有的社区基础设施,如交通,通信和能源系统,无缝集成可再生能源,智能传感器和电动汽车等可持续组件。这样的整合将确保未来的社区是真正可持续的,并且通过展示期望的品质而连接,所述期望的品质包括:a)零能量,因为它们在其能量生产中是自给自足的,B)零中断,因为跨社区的通信链路是超可靠的并且经历显著低的中断,以及c)零拥塞,因为跨社区的交通拥塞被最小化。基于这一总体愿景,该项目的目标是为智能、互联和可持续的社区开发一个新的规划框架,通过优化决定如何、何时以及在何处部署或升级社区基础设施,实现零能耗、零中断和零能耗目标。这些决策将由大量社区数据驱动,这些数据来自多种来源,包括移动性,能源,交通,通信需求和其他社会技术信息,以便就如何逐步和有机地将社区转变为完全可持续和真正连接的环境做出明智的决策。 这个问题的规模和异构性需要在用于处理,分析和可视化异构数据的工具中进行创新,以及用于监视此社区基础设施性能的数据感知指标。这项研究的一个关键要素是创建一个虚拟测试平台,该平台可以通过利用弗吉尼亚理工大学和佛罗里达零能源社区的真实世界大数据集以及其他数据来准确地重建、模拟和评估理论框架。能源部等来源。 该测试平台旨在开放获取,并将能够支持主办机构的研究以及其他需要非专有多域开放数据集的用户。 因此,这项研究的整体性有望促进可持续和互联社区的全球部署。拟议的研究将得到一个智能社区大数据挑战活动的补充,这将使广泛的社区参与。该教育计划包括新的以大数据为中心的课程,以及研究生和本科生大规模参与大数据和智能社区研究。通过开放源码软件和定期讲习班和辅导确保广泛传播。通过组织K-12外联活动,吸引未被充分代表的学生群体参与大数据研究,这一变革性研究将通过开发首个大数据驱动的整体方法,为通信、能源和交通网络等至关重要的系统共同规划、优化和部署社区基础设施,奠定智能、互联和可持续社区的理论和实践基础。通过汇集来自数据科学,电气工程以及土木和建筑工程的跨学科领域专家,这项研究将产生几项创新:1)用于忠实地创建智能社区的时空模型的新型大数据技术,该智能社区集成来自异构源的数据并阐明给定智能社区的组成和操作,2)新颖,数据驱动的性能指标,从随机几何推进强大的数学工具,通过零能耗、零中断和零拥塞的易处理概念明确量化智能社区的健康状况,3)先进的分析工具,从优化理论提出新颖的想法,设计最有效的部署策略,升级和操作各种社区基础设施节点,考虑到数据和社区的规模,动态和结构,以及4)虚拟智能社区测试平台,可以通过利用开放的非专有真实世界大数据集准确重建,模拟和评估理论框架。

项目成果

期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-task Learning for Transit Service Disruption Detection
用于交通服务中断检测的多任务学习
Virtual Reality Over Wireless Networks: Quality-of-Service Model and Learning-Based Resource Management
无线网络虚拟现实:服务质量模型和基于学习的资源管理
  • DOI:
    10.1109/tcomm.2018.2850303
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Chen, Mingzhe;Saad, Walid;Yin, Changchuan
  • 通讯作者:
    Yin, Changchuan
Optimized Deployment of Millimeter Wave Networks for In-Venue Regions With Stochastic Users’ Orientation
  • DOI:
    10.1109/twc.2019.2931535
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Mehdi Naderi Soorki;W. Saad;M. Bennis
  • 通讯作者:
    Mehdi Naderi Soorki;W. Saad;M. Bennis
Characterization of V2V Coverage in a Network of Roads Modeled as Poisson Line Process
Predictive Deployment of UAV Base Stations in Wireless Networks: Machine Learning Meets Contract Theory
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Walid Saad其他文献

Joint User Grouping, Version Selection and Bandwidth Allocation for Live Video Multicasting
直播视频组播的联合用户分组、版本选择和带宽分配
  • DOI:
    10.1109/tcomm.2021.3115480
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Zhilong Zhang;Minyin Zeng;Danpu Liu;Walid Saad;Shuguang Cui;H. Vincent Poor
  • 通讯作者:
    H. Vincent Poor
Sensing Aided Channel Estimation in Wideband Millimeter-Wave MIMO Systems
宽带毫米波 MIMO 系统中的传感辅助信道估计
Computer Vision-Based Localization With Visible Light Communications
基于计算机视觉的可见光通信定位
  • DOI:
    10.1109/twc.2021.3109146
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Lin Bai;Yang Yang;Mingzhe Chen;Chunyan Feng;Caili Guo;Walid Saad;Shuguang Cui
  • 通讯作者:
    Shuguang Cui
Investigation of genes that may contribute to disease tropism in Leishmania species
研究可能有助于利什曼原虫物种向病性的基因
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walid Saad
  • 通讯作者:
    Walid Saad
Pilot Optimization and Channel Estimation Scheme for Semantic Communication: A Framework for Edge Intelligence
语义通信的导频优化和信道估​​计方案:边缘智能框架

Walid Saad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Walid Saad', 18)}}的其他基金

Collaborative Research: NeTS: JUNO3: Towards an Internet of Federated Digital Twins (IoFDT) for Society 5.0: Fundamentals and Experimentation
合作研究:NetS:JUNO3:迈向社会 5.0 的联合数字孪生 (IoFDT) 互联网:基础知识和实验
  • 批准号:
    2210254
  • 财政年份:
    2022
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
NSF-AoF: Vision-Guided Wireless Communication Systems
NSF-AoF:视觉引导无线通信系统
  • 批准号:
    2225511
  • 财政年份:
    2022
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Hierarchical Federated Learning Over Wireless Edge Networks: Performance Analysis and Optimization
协作研究:CNS 核心:小型:无线边缘网络的分层联邦学习:性能分析和优化
  • 批准号:
    2114267
  • 财政年份:
    2021
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
SII Planning: ARIES: Center for Agile, RelIablE, Scalable Spectrum
SII 规划:ARIES:敏捷、可靠、可扩展频谱中心
  • 批准号:
    2037870
  • 财政年份:
    2020
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Modernizing Cities via Smart Garden Alleys with Application in Makassar City
EAGER:合作研究:通过智能花园巷实现城市现代化并在望加锡市应用
  • 批准号:
    2025377
  • 财政年份:
    2020
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Extended Reality over Wireless Cellular Networks: Quality-of-Experience Analysis and Optimization
合作研究:CNS 核心:小型:无线蜂窝网络上的扩展现实:体验质量分析和优化
  • 批准号:
    2007635
  • 财政年份:
    2020
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
CNS Core: Small: Collaborative: Towards Surge-Resilient Hybrid RF/VLC Networks
CNS 核心:小型:协作:迈向抗浪涌混合 RF/VLC 网络
  • 批准号:
    1909372
  • 财政年份:
    2019
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
ICE-T: RC: Towards Highly Reliable Low Latency Broadband (HRLLBB) Communications over Wireless Heterogeneous Networks
ICE-T:RC:通过无线异构网络实现高度可靠的低延迟宽带 (HRLLBB) 通信
  • 批准号:
    1836802
  • 财政年份:
    2018
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
CRISP Type 1/Collaborative Research: A Human-Centered Computational Framework for Urban and Community Design of Resilient Coastal Cities
CRISP 类型 1/协作研究:以人为本的弹性沿海城市城市和社区设计计算框架
  • 批准号:
    1638283
  • 财政年份:
    2017
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
CRISP Type 2: Collaborative Research: Towards Resilient Smart Cities
CRISP 类型 2:协作研究:迈向弹性智能城市
  • 批准号:
    1541105
  • 财政年份:
    2016
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 95.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了