Collaborative Research: Inductive Biases for the Acquisition of Syntactic Transformations in Neural Networks

合作研究:神经网络中句法转换习得的归纳偏差

基本信息

  • 批准号:
    2114505
  • 负责人:
  • 金额:
    $ 38.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Children are prodigious language learners; they quickly master the words and rules that govern the languages spoken by the communities in which they are raised. In contrast, modern artificial intelligence systems like Siri and Alexa need to be trained extensively on massive data sets; even then the linguistic abilities of such systems lag far behind those of a child. Scientific research on language acquisition and structure has taught us that children come to the task of language learning with preconceptions of what their language will look like. They use such preconceptions, referred to as "biases", to guide their learning, favoring language structures that are compatible with those biases. By structuring computers systems to incorporate these biases, we could construct computer interfaces that would be more effective not only for languages such as English and Spanish, but also for the many languages where training data is scarce, spoken in smaller communities within the United States and internationally. Moreover, understanding more about how the biases necessary for language learning can be instantiated in a computer model will help to resolve a long-standing debate about the nature of these human biases: are they specific to language or are they the result of more general properties of human cognition?The current project explores the learning of regularities in natural language syntax by computer systems. The focus will be specifically on systems based on neural networks, which have been behind the recent revolutionary advances in language technologies. The project will study a wide range of neural network architectures, some with explicitly represented linguistic biases and some not, and compare them with respect to their abilities to learn carefully defined linguistic patterns. In contrast to past work that has evaluated linguistic knowledge of neural networks indirectly through a language modeling (word prediction) task, this project instead explores tasks that are formulated as transformations, which map one linguistic form to another (e.g., question formation, verbal inflection, negation, passivization, mapping to logical form). Not only are such mappings at the basis of a widely applied class of neural network architectures, so-called sequence to sequence networks, but they are also a common way of characterizing syntactic processes in linguistics. As a result, the use of such mappings allows a more direct assessment of the networks' linguistic abilities. Part of the project will involve the collaborative development of training and testing datasets for the mappings, with involvement by an interdisciplinary team of linguists and computer scientists, and these will be made available as a resource for the entire research community. These datasets will then be used as the basis for the detailed analysis of neural network representations of linguistic structure. Furthermore, explicit comparisons will be carried out between neural network and human performance on the mapping tasks under study.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
儿童是惊人的语言学习者;他们很快掌握了他们成长的社区所讲的语言的单词和规则。相比之下,像Siri和Alexa这样的现代人工智能系统需要在大量数据集上进行广泛的训练;即使这样,这些系统的语言能力也远远落后于儿童。关于语言习得和语言结构的科学研究告诉我们,孩子们在学习语言时,对他们的语言会是什么样子有先入为主的看法。他们使用这种被称为“偏见”的先入之见来指导他们的学习,偏爱与这些偏见相容的语言结构。通过构建计算机系统来整合这些偏见,我们可以构建更有效的计算机界面,不仅适用于英语和西班牙语等语言,而且适用于训练数据稀缺的许多语言,这些语言在美国和国际上的较小社区中使用。此外,更多地了解语言学习所需的偏见如何在计算机模型中实例化,将有助于解决关于这些人类偏见性质的长期争论:它们是语言特有的,还是人类认知更普遍属性的结果?目前的项目探讨了计算机系统在自然语言语法中的学习。重点将特别放在基于神经网络的系统上,这些系统是最近语言技术革命性进展的背后。该项目将研究广泛的神经网络架构,有些具有明确的语言偏见,有些则没有,并比较它们学习精心定义的语言模式的能力。与过去通过语言建模(单词预测)任务间接评估神经网络语言知识的工作相反,该项目探索了被公式化为转换的任务,将一种语言形式映射到另一种语言形式(例如,疑问句的形成,动词的变化,否定,被动化,映射到逻辑形式)。这种映射不仅是广泛应用的一类神经网络架构(所谓的序列到序列网络)的基础,而且它们也是语言学中表征句法过程的常见方式。因此,使用这种映射可以更直接地评估网络的语言能力。该项目的一部分将涉及在一个由语言学家和计算机科学家组成的跨学科小组的参与下,合作开发映射的培训和测试数据集,这些数据集将作为整个研究界的资源提供。 然后,这些数据集将被用作详细分析语言结构的神经网络表示的基础。此外,将对神经网络和人类在所研究的绘图任务上的表现进行明确的比较。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
COGS: A Compositional Generalization Challenge Based on Semantic Interpretation
  • DOI:
    10.18653/v1/2020.emnlp-main.731
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Najoung Kim;Tal Linzen
  • 通讯作者:
    Najoung Kim;Tal Linzen
How to Plant Trees in LMs: Data and Architectural Effects on the Emergence of Syntactic Inductive Biases
如何在语言模型中种树:数据和架构对句法归纳偏差出现的影响
Coloring the Blank Slate: Pre-training Imparts a Hierarchical Inductive Bias to Sequence-to-sequence Models
为空白石板着色:预训练为序列到序列模型赋予分层归纳偏差
Structure Here, Bias There: Hierarchical Generalization by Jointly Learning Syntactic Transformations
这里的结构,那里的偏见:通过联合学习句法转换进行层次化概括
Syntactic Structure from Deep Learning
  • DOI:
    10.1146/annurev-linguistics-032020-051035
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linzen, Tal;Baroni, Marco
  • 通讯作者:
    Baroni, Marco
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tal Linzen其他文献

Priming syntactic ambiguity resolution in children and adults
启动儿童和成人的句法歧义解决
  • DOI:
    10.31234/osf.io/2xt8u
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Havron;Camila Scaff;M. J. Carbajal;Tal Linzen;Axel Barrault
  • 通讯作者:
    Axel Barrault
Causal Analysis of Syntactic Agreement Mechanisms in Neural Language Models
神经语言模型中句法一致机制的因果分析
Targeted Syntactic Evaluation of Language Models
语言模型的针对性句法评估
SPR mega-benchmark shows surprisal tracks construction- but not item-level difficulty
SPR 大型基准测试显示了令人惊讶的轨道构建 - 但不是项目级别的难度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kuan;Suhas Arehalli;Mari Kugemoto;Christian Muxica;Grusha Prasad;Brian;Dillon;Tal Linzen
  • 通讯作者:
    Tal Linzen
Hebrew possessive datives: corpus evidence for the role of affectedness
希伯来语所有格与格:影响作用的语料库证据
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tal Linzen
  • 通讯作者:
    Tal Linzen

Tal Linzen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tal Linzen', 18)}}的其他基金

CAREER: RI: Structural Linguistic Generalization Through Expert-Designed Tasks
职业:RI:通过专家设计的任务进行结构语言概括
  • 批准号:
    2239862
  • 财政年份:
    2023
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Continuing Grant
CompCog: Collaborative Research: Testing quantitative predictions of sentence processing theories with a large-scale eye-tracking database
CompCog:协作研究:使用大型眼动追踪数据库测试句子处理理论的定量预测
  • 批准号:
    2020945
  • 财政年份:
    2020
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Inductive Biases for the Acquisition of Syntactic Transformations in Neural Networks
合作研究:神经网络中句法转换习得的归纳偏差
  • 批准号:
    1920924
  • 财政年份:
    2019
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidation of Autonomous Stability Mechanisms Using Agent-Based Macroeconomic Models and Development of Inductive Research Methods
使用基于主体的宏观经济模型阐明自主稳定机制和归纳研究方法的发展
  • 批准号:
    22K01403
  • 财政年份:
    2022
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Inductive Biases for the Acquisition of Syntactic Transformations in Neural Networks
合作研究:神经网络中句法转换习得的归纳偏差
  • 批准号:
    1920924
  • 财政年份:
    2019
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Inductive Biases for the Acquisition of Syntactic Transformations in Neural Networks
合作研究:神经网络中句法转换习得的归纳偏差
  • 批准号:
    1919321
  • 财政年份:
    2019
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Inductive Construction of Multi-Dimensional Environmental Processes from Point Soil Data
博士论文研究:从点土壤数据归纳构建多维环境过程
  • 批准号:
    1819727
  • 财政年份:
    2018
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Standard Grant
Cross-cutting research of data- and model-driven methods by interlacing deductive and inductive cellular automata constructing method
通过交织演绎和归纳元胞自动机构建方法进行数据驱动和模型驱动方法的交叉研究
  • 批准号:
    16K13772
  • 财政年份:
    2016
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
CAREER: Development of High-Performance Lignocellulosic Composites for Building Envelopes: Authentic Learning About Sustainable Materials Through Research-Based Inductive Approach
职业:开发用于建筑围护结构的高性能木质纤维素复合材料:通过基于研究的归纳方法真实地学习可持续材料
  • 批准号:
    1150316
  • 财政年份:
    2012
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: An Inductive Framework to Support Software Maintenance
III:小:协作研究:支持软件维护的归纳框架
  • 批准号:
    1156401
  • 财政年份:
    2011
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: An Inductive Framework to Support Software Maintenance
III:小:协作研究:支持软件维护的归纳框架
  • 批准号:
    1063253
  • 财政年份:
    2010
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Continuing Grant
Research and Development of MEMS Miniaturized Inductive Power Generator with Multilayer Ceramic Magnetic Circuit
多层陶瓷磁路MEMS小型感应发电机的研制
  • 批准号:
    22560254
  • 财政年份:
    2010
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
III: Small: Collaborative Research: An Inductive Framework to Support Software Maintenance
III:小:协作研究:支持软件维护的归纳框架
  • 批准号:
    1016868
  • 财政年份:
    2010
  • 资助金额:
    $ 38.11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了